Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy

Marie Eve Wedge, Victoria A. Jennings, Mathieu J.F. Crupi, Joanna Poutou, Taylor Jamieson, Adrian Pelin, Giuseppe Pugliese, Christiano Tanese de Souza, Julia Petryk, Brian J. Laight, Meaghan Boileau, Zaid Taha, Nouf Alluqmani, Hayley E. McKay, Larissa Pikor, Sarwat Tahsin Khan, Taha Azad, Reza Rezaei, Bradley Austin, Xiaohong HeDavid Mansfield, Elaine Rose, Emily E.F. Brown, Natalie Crawford, Almohanad Alkayyal, Abera Surendran, Ragunath Singaravelu, Dominic G. Roy, Gemma Migneco, Benjamin McSweeney, Mary Lynn Cottee, Egon J. Jacobus, Brian A. Keller, Takafumi N. Yamaguchi, Paul C. Boutros, Michele Geoffrion, Katey J. Rayner, Avijit Chatterjee, Rebecca C. Auer, Jean Simon Diallo, Derrick Gibbings, Benjamin R. tenOever, Alan Melcher, John C. Bell, Carolina S. Ilkow

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Recent advances in cancer therapeutics clearly demonstrate the need for innovative multiplex therapies that attack the tumour on multiple fronts. Oncolytic or “cancer-killing” viruses (OVs) represent up-and-coming multi-mechanistic immunotherapeutic drugs for the treatment of cancer. In this study, we perform an in-vitro screen based on virus-encoded artificial microRNAs (amiRNAs) and find that a unique amiRNA, herein termed amiR-4, confers a replicative advantage to the VSVΔ51 OV platform. Target validation of amiR-4 reveals ARID1A, a protein involved in chromatin remodelling, as an important player in resistance to OV replication. Virus-directed targeting of ARID1A coupled with small-molecule inhibition of the methyltransferase EZH2 leads to the synthetic lethal killing of both infected and uninfected tumour cells. The bystander killing of uninfected cells is mediated by intercellular transfer of extracellular vesicles carrying amiR-4 cargo. Altogether, our findings establish that OVs can serve as replicating vehicles for amiRNA therapeutics with the potential for combination with small molecule and immune checkpoint inhibitor therapy.

Original languageEnglish
Article number1898
JournalNature Communications
Volume13
Issue number1
DOIs
StatePublished - Dec 2022

Fingerprint

Dive into the research topics of 'Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy'. Together they form a unique fingerprint.

Cite this