TY - JOUR
T1 - Viral inhibition of bacterial phagocytosis by human macrophages
T2 - Redundant role of CD36
AU - Cooper, Grace E.
AU - Pounce, Zoe C.
AU - Wallington, Joshua C.
AU - Bastidas-Legarda, Leidy Y.
AU - Nicholas, Ben
AU - Chidomere, Chiamaka
AU - Robinson, Emily C.
AU - Martin, Kirstin
AU - Tocheva, Anna S.
AU - Christodoulides, Myron
AU - Djukanovic, Ratko
AU - Wilkinson, Tom M.A.
AU - Staples, Karl J.
N1 - Publisher Copyright:
© 2016 Cooper et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2016/10
Y1 - 2016/10
N2 - Macrophages are essential to maintaining lung homoeostasis and recent work has demonstrated that influenza-infected lung macrophages downregulate their expression of the scavenger receptor CD36. This receptor has also been shown to be involved in phagocytosis of Streptococcus pneumoniae, a primary agent associated with pneumonia secondary to viral infection. The aim of this study was to investigate the role of CD36 in the effects of viral infection on macrophage phagocytic function. Human monocyte-derived macrophages (MDM) were exposed to H3N2 X31 influenza virus, M37 respiratory syncytial virus (RSV) or UV-irradiated virus. No infection of MDM was seen upon exposure to UV-irradiated virus but incubation with live X31 or M37 resulted in significant levels of viral detection by flow cytometry or RT-PCR respectively. Infection resulted in significantly diminished uptake of S. pneumoniae by MDM and significantly decreased expression of CD36 at both the cell surface and mRNA level. Concurrently, there was a significant increase in IFNβ gene expression in response to infection and we observed a significant decrease in bacterial phagocytosis (p =0.031) and CD36 gene expression (p =0.031) by MDM cultured for 24 h in 50IU/ml IFNβ. Knockdown of CD36 by siRNA resulted in decreased phagocytosis, but this was mimicked by transfection reagent alone. When MDM were incubated with CD36 blocking antibodies no effect on phagocytic ability was observed. These data indicate that autologous IFNβ production by virally-infected cells can inhibit bacterial phagocytosis, but that decreased CD36 expression by these cells does not play a major role in this functional deficiency.
AB - Macrophages are essential to maintaining lung homoeostasis and recent work has demonstrated that influenza-infected lung macrophages downregulate their expression of the scavenger receptor CD36. This receptor has also been shown to be involved in phagocytosis of Streptococcus pneumoniae, a primary agent associated with pneumonia secondary to viral infection. The aim of this study was to investigate the role of CD36 in the effects of viral infection on macrophage phagocytic function. Human monocyte-derived macrophages (MDM) were exposed to H3N2 X31 influenza virus, M37 respiratory syncytial virus (RSV) or UV-irradiated virus. No infection of MDM was seen upon exposure to UV-irradiated virus but incubation with live X31 or M37 resulted in significant levels of viral detection by flow cytometry or RT-PCR respectively. Infection resulted in significantly diminished uptake of S. pneumoniae by MDM and significantly decreased expression of CD36 at both the cell surface and mRNA level. Concurrently, there was a significant increase in IFNβ gene expression in response to infection and we observed a significant decrease in bacterial phagocytosis (p =0.031) and CD36 gene expression (p =0.031) by MDM cultured for 24 h in 50IU/ml IFNβ. Knockdown of CD36 by siRNA resulted in decreased phagocytosis, but this was mimicked by transfection reagent alone. When MDM were incubated with CD36 blocking antibodies no effect on phagocytic ability was observed. These data indicate that autologous IFNβ production by virally-infected cells can inhibit bacterial phagocytosis, but that decreased CD36 expression by these cells does not play a major role in this functional deficiency.
UR - http://www.scopus.com/inward/record.url?scp=84992026540&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0163889
DO - 10.1371/journal.pone.0163889
M3 - Article
C2 - 27701435
AN - SCOPUS:84992026540
SN - 1932-6203
VL - 11
JO - PLoS ONE
JF - PLoS ONE
IS - 10
M1 - e0163889
ER -