TY - JOUR
T1 - Vascular Notch Signaling in Stress Hematopoiesis
AU - Huang, Can
AU - Yang, Dawei
AU - Ye, George W.
AU - Powell, Charles A.
AU - Guo, Peipei
N1 - Publisher Copyright:
© Copyright © 2021 Huang, Yang, Ye, Powell and Guo.
PY - 2021/1/21
Y1 - 2021/1/21
N2 - Canonical Notch signaling is one of the most conserved signaling cascades. It regulates cell proliferation, cell differentiation, and cell fate maintenance in a variety of biological systems during development and cancer (Fortini, 2009; Kopan and Ilagan, 2009; Andersson et al., 2011; Ntziachristos et al., 2014). For the hematopoietic system, during embryonic development, Notch1 is essential for the emergence of hematopoietic stem cells (HSCs) at the aorta-gornado-mesonephro regions of the dorsal aorta. At adult stage, Notch receptors and Notch targets are expressed at different levels in diverse hematopoietic cell types and influence lineage choices. For example, Notch specifies T cell lineage over B cells. However, there has been a long-lasting debate on whether Notch signaling is required for the maintenance of adult HSCs, utilizing transgenic animals inactivating different components of the Notch signaling pathway in HSCs or niche cells. The aims of the current mini-review are to summarize the evidence that disapproves or supports such hypothesis and point at imperative questions waiting to be addressed; hence, some of the seemingly contradictory findings could be reconciled. We need to better delineate the Notch signaling events using biochemical assays to identify direct Notch targets within HSCs or niche cells in specific biological context. More importantly, we call for more elaborate studies that pertain to whether niche cell type (vascular endothelial cells or other stromal cell)-specific Notch ligands regulate the differentiation of T cells in solid tumors during the progression of T-lymphoblastic lymphoma (T-ALL) or chronic myelomonocytic leukemia (CMML). We believe that the investigation of vascular endothelial cells' or other stromal cell types' interaction with hematopoietic cells during homeostasis and stress can offer insights toward specific and effective Notch-related therapeutics.
AB - Canonical Notch signaling is one of the most conserved signaling cascades. It regulates cell proliferation, cell differentiation, and cell fate maintenance in a variety of biological systems during development and cancer (Fortini, 2009; Kopan and Ilagan, 2009; Andersson et al., 2011; Ntziachristos et al., 2014). For the hematopoietic system, during embryonic development, Notch1 is essential for the emergence of hematopoietic stem cells (HSCs) at the aorta-gornado-mesonephro regions of the dorsal aorta. At adult stage, Notch receptors and Notch targets are expressed at different levels in diverse hematopoietic cell types and influence lineage choices. For example, Notch specifies T cell lineage over B cells. However, there has been a long-lasting debate on whether Notch signaling is required for the maintenance of adult HSCs, utilizing transgenic animals inactivating different components of the Notch signaling pathway in HSCs or niche cells. The aims of the current mini-review are to summarize the evidence that disapproves or supports such hypothesis and point at imperative questions waiting to be addressed; hence, some of the seemingly contradictory findings could be reconciled. We need to better delineate the Notch signaling events using biochemical assays to identify direct Notch targets within HSCs or niche cells in specific biological context. More importantly, we call for more elaborate studies that pertain to whether niche cell type (vascular endothelial cells or other stromal cell)-specific Notch ligands regulate the differentiation of T cells in solid tumors during the progression of T-lymphoblastic lymphoma (T-ALL) or chronic myelomonocytic leukemia (CMML). We believe that the investigation of vascular endothelial cells' or other stromal cell types' interaction with hematopoietic cells during homeostasis and stress can offer insights toward specific and effective Notch-related therapeutics.
KW - T cell immunity
KW - endothelial cells
KW - notch signaling
KW - stress hematopoiesis
KW - tumor
UR - http://www.scopus.com/inward/record.url?scp=85100543421&partnerID=8YFLogxK
U2 - 10.3389/fcell.2020.606448
DO - 10.3389/fcell.2020.606448
M3 - Review article
AN - SCOPUS:85100543421
SN - 2296-634X
VL - 8
JO - Frontiers in Cell and Developmental Biology
JF - Frontiers in Cell and Developmental Biology
M1 - 606448
ER -