Abstract
Background: Infants with lower respiratory tract infections (LRTIs) are at an increased risk of developing childhood wheezing illnesses (including asthma), but it is not currently possible to predict those at risk for these long-term outcomes. The current objective was to examine whether urine levels of club cell 16-kDa secretory protein (CC16) at the time of an infant LRTI are associated with the development of childhood wheezing illnesses. Methods: Prospective study of 133 previously healthy infants enrolled during a healthcare visit for a LRTI and followed longitudinally for childhood wheezing illnesses. Urine levels of CC16 at the time of enrollment were measured after validating a commercially available enzyme-linked immunosorbent assay kit for serum. The outcome of interest was parental report of subsequent childhood wheeze (defined as ≥1 episode of wheezing following the initial LRTI) at the 1-year follow-up visit. Logistic regression was used for the main analysis. Results: The median (interquartile range) urine levels of CC16 (ng/mg of creatinine) at the time of an infant LRTI were 11.1 (7.7-20.1) for infants with subsequent childhood wheeze and 13.4 (8.3-61.1) for those without (p=0.11). In the main multivariate analysis using a logarithmic transformation of the urine levels of CC16, a twofold increase in urine levels of CC16 was associated with ∼30% decreased odds (OR=0.74 [95% confidence interval (CI) 0.56-0.98], p=0.04) of subsequent childhood wheeze after adjustment for potential confounders. Conclusions: An inverse association was found between urine levels of CC16 at the time of an infant LRTI and the odds of subsequent childhood wheeze. Urine CC16 may be a useful biomarker of the development of childhood wheezing illnesses after LRTIs in infancy.
Original language | English |
---|---|
Pages (from-to) | 158-164 |
Number of pages | 7 |
Journal | Pediatric, Allergy, Immunology, and Pulmonology |
Volume | 28 |
Issue number | 3 |
DOIs | |
State | Published - 1 Sep 2015 |
Externally published | Yes |