TY - JOUR
T1 - Unexpected deposition of brown fat in mammary gland during postnatal development
AU - Gouon-Evans, Valérie
AU - Pollard, Jeffrey W.
PY - 2002/11/1
Y1 - 2002/11/1
N2 - Mammary fat tissue is crucial for mammary ductal morphogenesis in both fetal and adult mice. There are two kinds of adipocytes, the energy-storing white and the energy-dissipating brown adipocyte. The precise identity of the types of adipocyte in the mammary gland has never been investigated but was always assumed to be only white fat. In this study, we show that both white and brown adipocytes are present in the postnatal mammary gland. The amount of brown adipose tissue (BAT) examined by histology and electron microscopy correlates with the transcript levels of uncoupling protein 1, which is a mitochondrial carrier expressed exclusively in BAT. Uncoupling protein 1 mRNAs are the highest during prepuberty, decrease upon puberty, and are finally undetectable in the adult mammary gland. The analysis of a BAT-depleted mouse model showed that depletion of mammary BAT in early postnatal development induces epithelial differentiation. Alveolar structures were formed along all ducts and were functional since they produced β-casein. However, mammary transplantation experiments indicated that a systemic effect was responsible for epithelium differentiation. Our data suggest that BAT negatively regulates the differentiation of mammary epithelial cells in a systemic manner during prepubertal ductal outgrowth.
AB - Mammary fat tissue is crucial for mammary ductal morphogenesis in both fetal and adult mice. There are two kinds of adipocytes, the energy-storing white and the energy-dissipating brown adipocyte. The precise identity of the types of adipocyte in the mammary gland has never been investigated but was always assumed to be only white fat. In this study, we show that both white and brown adipocytes are present in the postnatal mammary gland. The amount of brown adipose tissue (BAT) examined by histology and electron microscopy correlates with the transcript levels of uncoupling protein 1, which is a mitochondrial carrier expressed exclusively in BAT. Uncoupling protein 1 mRNAs are the highest during prepuberty, decrease upon puberty, and are finally undetectable in the adult mammary gland. The analysis of a BAT-depleted mouse model showed that depletion of mammary BAT in early postnatal development induces epithelial differentiation. Alveolar structures were formed along all ducts and were functional since they produced β-casein. However, mammary transplantation experiments indicated that a systemic effect was responsible for epithelium differentiation. Our data suggest that BAT negatively regulates the differentiation of mammary epithelial cells in a systemic manner during prepubertal ductal outgrowth.
UR - http://www.scopus.com/inward/record.url?scp=0036842127&partnerID=8YFLogxK
U2 - 10.1210/me.2001-0337
DO - 10.1210/me.2001-0337
M3 - Article
C2 - 12403850
AN - SCOPUS:0036842127
SN - 0888-8809
VL - 16
SP - 2618
EP - 2627
JO - Molecular Endocrinology
JF - Molecular Endocrinology
IS - 11
ER -