TY - JOUR
T1 - TSC-22 promotes transforming growth factor β-Mediated cardiac myofibroblast differentiation by antagonizing Smad7 activity
AU - Yan, Xiaohua
AU - Zhang, Junyu
AU - Pan, Lin
AU - Wang, Peng
AU - Xue, Hua
AU - Zhang, Long
AU - Gao, Xia
AU - Zhao, Xingang
AU - Ning, Yuanheng
AU - Chen, Ye Guang
PY - 2011/9
Y1 - 2011/9
N2 - Transforming growth factor β (TGF-β) plays a critical role in tissue fibrosis. The duration and intensity of TGF-β signaling are tightly regulated. Here we report that TSC-22 (TGF-β-stimulated clone 22) facilitates TGF-β signaling by antagonizing Smad7 activity to increase receptor stability. TSC-22 enhances TGF-β-induced Smad2/3 phosphorylation and transcriptional responsiveness. The stimulatory effect of TSC-22 is dependent on Smad7, as silencing Smad7 expression abolishes it. TSC-22 interacts with TGF-β type I receptor TβRI and Smad7 in mutually exclusive ways and disrupts the association of Smad7/Smurfs with TβRI, thereby preventing ubiquitination and degradation of the receptor. We also found that TSC-22 can promote the differentiation of cardiac myofibroblasts by increasing expression of the fibrotic genes for α-smooth muscle actin (α-SMA), PAI-1, fibronectin, and collagen I, which is consistent with upregulation of TSC-22, phospho-Smad2/3, and the fibrotic genes in isoproterenol-induced rat myocardial fibrotic hearts. Taken together with the notion that TGF-β induces TSC-22 expression, our findings suggest that TSC-22 regulates TGF-β signaling via a positive-feedback mechanism and may contribute to myocardial fibrosis.
AB - Transforming growth factor β (TGF-β) plays a critical role in tissue fibrosis. The duration and intensity of TGF-β signaling are tightly regulated. Here we report that TSC-22 (TGF-β-stimulated clone 22) facilitates TGF-β signaling by antagonizing Smad7 activity to increase receptor stability. TSC-22 enhances TGF-β-induced Smad2/3 phosphorylation and transcriptional responsiveness. The stimulatory effect of TSC-22 is dependent on Smad7, as silencing Smad7 expression abolishes it. TSC-22 interacts with TGF-β type I receptor TβRI and Smad7 in mutually exclusive ways and disrupts the association of Smad7/Smurfs with TβRI, thereby preventing ubiquitination and degradation of the receptor. We also found that TSC-22 can promote the differentiation of cardiac myofibroblasts by increasing expression of the fibrotic genes for α-smooth muscle actin (α-SMA), PAI-1, fibronectin, and collagen I, which is consistent with upregulation of TSC-22, phospho-Smad2/3, and the fibrotic genes in isoproterenol-induced rat myocardial fibrotic hearts. Taken together with the notion that TGF-β induces TSC-22 expression, our findings suggest that TSC-22 regulates TGF-β signaling via a positive-feedback mechanism and may contribute to myocardial fibrosis.
UR - http://www.scopus.com/inward/record.url?scp=80052572648&partnerID=8YFLogxK
U2 - 10.1128/MCB.05448-11
DO - 10.1128/MCB.05448-11
M3 - Article
C2 - 21791611
AN - SCOPUS:80052572648
SN - 0270-7306
VL - 31
SP - 3700
EP - 3709
JO - Molecular and Cellular Biology
JF - Molecular and Cellular Biology
IS - 18
ER -