TY - JOUR
T1 - Treatment with Distinct Antibiotic Classes Causes Different Pulmonary Outcomes on Allergic Airway Inflammation Associated with Modulation of Symbiotic Microbiota
AU - Cavalcante, Gregório Grama
AU - Guimarães, Anna Gabriella
AU - Queiroz-Glauss, Camila Pereira
AU - Gonçalves Pereira, Marcela Helena
AU - Dias, Angélica Samer Lallo
AU - Horta, Laila Sampaio
AU - De Oliveira, Jamil Silvano
AU - Cangussú, Silvia Dantas
AU - Magalhães, Paula Prazeres
AU - Russo, Remo Castro
AU - Santiago, H. C.
N1 - Publisher Copyright:
© 2022 Gregório Grama Cavalcante et al.
PY - 2022
Y1 - 2022
N2 - Background. Asthma is a chronic pulmonary disease that affects about 300 million people worldwide. Previous studies have associated antimicrobial use with allergies, but the real impact of antibiotics on asthma is still elusive. We investigated the potential impact of amoxicillin (Amox), trimethoprim/sulfamethoxazole (TMP/SMX), and metronidazole (Metro) in a murine model of OVA-induced allergic airway inflammation. Methods. BALB/c mice received three cycles of 7 days of antibiotics in drinking water followed by 7 days washout and were sensitized i.p. with OVA/Alum at days 0 and 14. After the end of the last antibiotic washout, the mice were challenged with aerosolized OVA. Pulmonary parameters were evaluated, and serum, BAL, and feces were collected for analysis. Results. Amox- and TMP/SMX-treated animals displayed more severe allergic airway inflammation parameters with increased airway hyperresponsiveness, reduced lung alveolar volume, and increased levels in BAL of IL-4 and IL-6. In contrast, Metro-treated mice showed preserved FEV-50, decreased lung inflammation, and higher levels of butyrate and propionate in their feces. Metro treatment was associated with increased OVA-specific IgA in serum. BAL microbiota was abundant in allergic groups but not in nonallergic controls with the Amox-treated group displaying the increased frequency of Proteobacteria, while Metro and TMP/SMX showed increased levels of Firmicutes. In the gut, we observed the enrichment of Akkermansia muciniphila associated with reduced airway inflammation phenotype in the Metro group, even after the recovery period. Conclusion. Our data suggest that different antibiotic treatments may impact the course of experimental allergic airway inflammation in diverse ways by several mechanisms, including modulation of short-chain fat acids production by intestinal microbiota.
AB - Background. Asthma is a chronic pulmonary disease that affects about 300 million people worldwide. Previous studies have associated antimicrobial use with allergies, but the real impact of antibiotics on asthma is still elusive. We investigated the potential impact of amoxicillin (Amox), trimethoprim/sulfamethoxazole (TMP/SMX), and metronidazole (Metro) in a murine model of OVA-induced allergic airway inflammation. Methods. BALB/c mice received three cycles of 7 days of antibiotics in drinking water followed by 7 days washout and were sensitized i.p. with OVA/Alum at days 0 and 14. After the end of the last antibiotic washout, the mice were challenged with aerosolized OVA. Pulmonary parameters were evaluated, and serum, BAL, and feces were collected for analysis. Results. Amox- and TMP/SMX-treated animals displayed more severe allergic airway inflammation parameters with increased airway hyperresponsiveness, reduced lung alveolar volume, and increased levels in BAL of IL-4 and IL-6. In contrast, Metro-treated mice showed preserved FEV-50, decreased lung inflammation, and higher levels of butyrate and propionate in their feces. Metro treatment was associated with increased OVA-specific IgA in serum. BAL microbiota was abundant in allergic groups but not in nonallergic controls with the Amox-treated group displaying the increased frequency of Proteobacteria, while Metro and TMP/SMX showed increased levels of Firmicutes. In the gut, we observed the enrichment of Akkermansia muciniphila associated with reduced airway inflammation phenotype in the Metro group, even after the recovery period. Conclusion. Our data suggest that different antibiotic treatments may impact the course of experimental allergic airway inflammation in diverse ways by several mechanisms, including modulation of short-chain fat acids production by intestinal microbiota.
UR - http://www.scopus.com/inward/record.url?scp=85133247596&partnerID=8YFLogxK
U2 - 10.1155/2022/1466011
DO - 10.1155/2022/1466011
M3 - Article
C2 - 35785028
AN - SCOPUS:85133247596
SN - 2314-8861
VL - 2022
JO - Journal of Immunology Research
JF - Journal of Immunology Research
M1 - 1466011
ER -