TY - JOUR
T1 - Transgenic expression of the positive selected human GLUD2 gene improves in vivo glucose homeostasis by regulating basic insulin secretion
AU - Petraki, Zoe
AU - Droubogiannis, Stavros
AU - Mylonaki, Konstantina
AU - Chlouverakis, Gregory
AU - Plaitakis, Andreas
AU - Spanaki, Cleanthe
N1 - Publisher Copyright:
© 2019 Elsevier Inc.
PY - 2019/11
Y1 - 2019/11
N2 - Glutamate dehydrogenase 1 (GDH1) contributes to glucose-stimulated insulin secretion in murine β-cells, but not to basic insulin release. The implications of these findings for human biology are unclear as humans have two GDH-specific enzymes: hGDH1 (GLUD1-encoded) and hGDH2 (GLUD2-encoded), a novel enzyme that is highly activated by ADP and L-leucine. Here we studied in vivo glucose homeostasis in transgenic (Tg) mice generated by inserting the GLUD2 gene and its putative regulatory elements into their genome. Using specific antibodies, we observed that hGDH2 was co-expressed with the endogenous murine GDH1 in pancreatic β-cells of Tg mice. Fasting blood glucose (FBG) levels were lower and of a narrower range in Tg (95% CI: 90.6–96.8 mg/dl; N = 26) than in Wt mice (95% CI: 136.2–151.4 mg/dl; N = 23; p < 0.0001), closely resembling those of healthy humans. GLUD2 also protected the host mouse from developing diabetes with advancing age. Tg animals maintained 2.6-fold higher fasting serum insulin levels (mean ± SD: 1.63 ± 0.15 ng/ml; N = 12) than Wt mice (0.63 ± 0.05 ng/ml; N = 12; p < 0.0001). Glucose loading (1 mg/g, given i.p.) induced comparable serum insulin increases in Tg and Wt mice, suggesting no significant GLUD2 effect on glucose-stimulated insulin release. L-leucine (0.25 mg/g given orally) induced a 2-fold increase in the serum insulin of the Wt mice, implying significant activation of the endogenous GDH1. However, L-leucine had little effect on the high insulin levels of the Tg mice, suggesting that, under the high ADP levels that prevail in β-cells in the fasting state, glutamate flux through hGDH2 is close to maximal. Hence, the present data, showing that GLUD2 expression in Tg mice improves in vivo glucose homeostasis by boosting fasting serum insulin levels, suggest that evolutionary adaptation of hGDH2 has enabled humans to achieve narrow-range euglycemia by regulating glutamate-mediated basal insulin secretion.
AB - Glutamate dehydrogenase 1 (GDH1) contributes to glucose-stimulated insulin secretion in murine β-cells, but not to basic insulin release. The implications of these findings for human biology are unclear as humans have two GDH-specific enzymes: hGDH1 (GLUD1-encoded) and hGDH2 (GLUD2-encoded), a novel enzyme that is highly activated by ADP and L-leucine. Here we studied in vivo glucose homeostasis in transgenic (Tg) mice generated by inserting the GLUD2 gene and its putative regulatory elements into their genome. Using specific antibodies, we observed that hGDH2 was co-expressed with the endogenous murine GDH1 in pancreatic β-cells of Tg mice. Fasting blood glucose (FBG) levels were lower and of a narrower range in Tg (95% CI: 90.6–96.8 mg/dl; N = 26) than in Wt mice (95% CI: 136.2–151.4 mg/dl; N = 23; p < 0.0001), closely resembling those of healthy humans. GLUD2 also protected the host mouse from developing diabetes with advancing age. Tg animals maintained 2.6-fold higher fasting serum insulin levels (mean ± SD: 1.63 ± 0.15 ng/ml; N = 12) than Wt mice (0.63 ± 0.05 ng/ml; N = 12; p < 0.0001). Glucose loading (1 mg/g, given i.p.) induced comparable serum insulin increases in Tg and Wt mice, suggesting no significant GLUD2 effect on glucose-stimulated insulin release. L-leucine (0.25 mg/g given orally) induced a 2-fold increase in the serum insulin of the Wt mice, implying significant activation of the endogenous GDH1. However, L-leucine had little effect on the high insulin levels of the Tg mice, suggesting that, under the high ADP levels that prevail in β-cells in the fasting state, glutamate flux through hGDH2 is close to maximal. Hence, the present data, showing that GLUD2 expression in Tg mice improves in vivo glucose homeostasis by boosting fasting serum insulin levels, suggest that evolutionary adaptation of hGDH2 has enabled humans to achieve narrow-range euglycemia by regulating glutamate-mediated basal insulin secretion.
KW - Body weight
KW - Expression
KW - GLUD2 transgenic mice
KW - Glucose homeostasis
KW - Metabolism
KW - hGDH2
UR - http://www.scopus.com/inward/record.url?scp=85071646225&partnerID=8YFLogxK
U2 - 10.1016/j.metabol.2019.153958
DO - 10.1016/j.metabol.2019.153958
M3 - Article
C2 - 31400387
AN - SCOPUS:85071646225
SN - 0026-0495
VL - 100
JO - Metabolism: Clinical and Experimental
JF - Metabolism: Clinical and Experimental
M1 - 153958
ER -