TY - JOUR
T1 - Transcriptional control of cone photoreceptor diversity by a thyroid hormone receptor
AU - Aramaki, Michihiko
AU - Wu, Xuefeng
AU - Liu, Hong
AU - Liu, Ye
AU - Cho, Young Wook
AU - Song, Mina
AU - Fu, Yulong
AU - Ng, Lily
AU - Forrest, Douglas
N1 - Publisher Copyright:
Copyright © 2022 the Author(s).
PY - 2022/12/6
Y1 - 2022/12/6
N2 - Cone photoreceptor diversity allows detection of wavelength information in light, the first step in color (chromatic) vision. In most mammals, cones express opsin photopigments for sensitivity to medium/long (M, “green”) or short (S, “blue”) wavelengths and are differentially arrayed over the retina. Cones appear early in retinal neurogenesis but little is understood of the subsequent control of diversity of these postmitotic neurons, because cone populations are sparse and, apart from opsins, poorly defined. It is also a challenge to distinguish potentially subtle differences between cell subtypes within a lineage. Therefore, we derived a Cre driver to isolate individual M and S opsin-enriched cones, which are distributed in counter-gradients over the mouse retina. Fine resolution transcriptome analyses identified expression gradients for groups of genes. The postnatal emergence of gradients indicated divergent differentiation of cone precursors during maturation. Using genetic tagging, we demonstrated a role for thyroid hormone receptor β2 (TRβ2) in control of gradient genes, many of which are enriched for TRβ2 binding sites and TRβ2-regulated open chromatin. Deletion of TRβ2 resulted in poorly distinguished cones regardless of retinal location. We suggest that TRβ2 controls a bipotential transcriptional state to promote cone diversity and the chromatic potential of the species.
AB - Cone photoreceptor diversity allows detection of wavelength information in light, the first step in color (chromatic) vision. In most mammals, cones express opsin photopigments for sensitivity to medium/long (M, “green”) or short (S, “blue”) wavelengths and are differentially arrayed over the retina. Cones appear early in retinal neurogenesis but little is understood of the subsequent control of diversity of these postmitotic neurons, because cone populations are sparse and, apart from opsins, poorly defined. It is also a challenge to distinguish potentially subtle differences between cell subtypes within a lineage. Therefore, we derived a Cre driver to isolate individual M and S opsin-enriched cones, which are distributed in counter-gradients over the mouse retina. Fine resolution transcriptome analyses identified expression gradients for groups of genes. The postnatal emergence of gradients indicated divergent differentiation of cone precursors during maturation. Using genetic tagging, we demonstrated a role for thyroid hormone receptor β2 (TRβ2) in control of gradient genes, many of which are enriched for TRβ2 binding sites and TRβ2-regulated open chromatin. Deletion of TRβ2 resulted in poorly distinguished cones regardless of retinal location. We suggest that TRβ2 controls a bipotential transcriptional state to promote cone diversity and the chromatic potential of the species.
KW - THRB
KW - color vision
KW - cone photoreceptor
KW - retina
KW - thyroid hormone receptor
UR - http://www.scopus.com/inward/record.url?scp=85143586301&partnerID=8YFLogxK
U2 - 10.1073/pnas.2209884119
DO - 10.1073/pnas.2209884119
M3 - Article
AN - SCOPUS:85143586301
SN - 0027-8424
VL - 119
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 49
M1 - e2209884119
ER -