Abstract
Steady-state and time-resolved fluorescence properties of the single tyrosyl residue in oxytocin and two oxytocin derivatives at pH 3 are presented. The decay kinetics of the tyrosyl residue are complex for each compound. By use of a linked-function analysis, the fluorescence kinetics can be explained by a ground-state rotamer model. The linked function assumes that the preexponential weighting factors (amplitudes) of the fluorescence decay constants have the same relative relationship as the 1H NMR determined phenol side-chain rotamer populations. According to this model, the static quenching of the oxytocin fluorescence can be attributed to an interaction between one specific rotamer population of the tyrosine ring and the internal disulfide bridge.
Original language | English |
---|---|
Pages (from-to) | 607-612 |
Number of pages | 6 |
Journal | Biochemistry |
Volume | 25 |
Issue number | 3 |
DOIs | |
State | Published - Feb 1986 |