TY - JOUR
T1 - Therapeutic benefits of young, but not old, adipose-derived mesenchymal stem cells in a chronic mouse model of bleomycin-induced pulmonary fibrosis
AU - Tashiro, Jun
AU - Elliot, Sharon J.
AU - Gerth, David J.
AU - Xia, Xiaomei
AU - Pereira-Simon, Simone
AU - Choi, Rhea
AU - Catanuto, Paola
AU - Shahzeidi, Shahriar
AU - Toonkel, Rebecca L.
AU - Shah, Rahil H.
AU - El Salem, Fadi
AU - Glassberg, Marilyn K.
N1 - Publisher Copyright:
© 2015 Elsevier Inc. All rights reserved.
PY - 2015/12/1
Y1 - 2015/12/1
N2 - The observation that pulmonary inflammatory lesions and bleomycin (BLM)-induced pulmonary fibrosis spontaneously resolve in young mice, whereas remaining irreversible in aged mice suggests that impairment of pulmonary regeneration and repair is associated with aging. Because mesenchymal stem cells (MSCs) may promote repair after injury, we postulated that differences in MSCs from aged mice may underlie postinjury fibrosis in aging. The potential for young-donor MSCs to inhibit BLM-induced pulmonary fibrosis in aged male mice (>22 months) has not been studied. Adipose-derived MSCs (ASCs) from young (4 months) and old (22 months) male mice were infused 1 day after intratracheal BLM administration. At 21-day sacrifice, aged BLM mice demonstrated lung fibrosis by Ashcroft score, collagen content, and αv-integrin messenger RNA (mRNA) expression. Lung tissue from aged BLM mice receiving young ASCs exhibited decreased fibrosis, matrix metalloproteinase (MMP)-2 activity, oxidative stress, and markers of apoptosis vs BLM controls. Lung mRNA expression of tumor necrosis factor-alpha was also decreased in aged BLM mice receiving young-donor ASCs vs BLM controls. In contrast, old-donor ASC treatment in aged BLM mice did not reduce fibrosis and related markers. On examination of the cells, young-donor ASCs had decreased mRNA expression of MMP-2, insulin-like growth factor (IGF) receptor, and protein kinase B (AKT) activation compared with old-donor ASCs. These results show that the BLM-induced pulmonary fibrosis in aged mice could be blocked by young-donor ASCs and that the mechanisms involve changes in collagen turnover and markers of inflammation.
AB - The observation that pulmonary inflammatory lesions and bleomycin (BLM)-induced pulmonary fibrosis spontaneously resolve in young mice, whereas remaining irreversible in aged mice suggests that impairment of pulmonary regeneration and repair is associated with aging. Because mesenchymal stem cells (MSCs) may promote repair after injury, we postulated that differences in MSCs from aged mice may underlie postinjury fibrosis in aging. The potential for young-donor MSCs to inhibit BLM-induced pulmonary fibrosis in aged male mice (>22 months) has not been studied. Adipose-derived MSCs (ASCs) from young (4 months) and old (22 months) male mice were infused 1 day after intratracheal BLM administration. At 21-day sacrifice, aged BLM mice demonstrated lung fibrosis by Ashcroft score, collagen content, and αv-integrin messenger RNA (mRNA) expression. Lung tissue from aged BLM mice receiving young ASCs exhibited decreased fibrosis, matrix metalloproteinase (MMP)-2 activity, oxidative stress, and markers of apoptosis vs BLM controls. Lung mRNA expression of tumor necrosis factor-alpha was also decreased in aged BLM mice receiving young-donor ASCs vs BLM controls. In contrast, old-donor ASC treatment in aged BLM mice did not reduce fibrosis and related markers. On examination of the cells, young-donor ASCs had decreased mRNA expression of MMP-2, insulin-like growth factor (IGF) receptor, and protein kinase B (AKT) activation compared with old-donor ASCs. These results show that the BLM-induced pulmonary fibrosis in aged mice could be blocked by young-donor ASCs and that the mechanisms involve changes in collagen turnover and markers of inflammation.
UR - http://www.scopus.com/inward/record.url?scp=84958029950&partnerID=8YFLogxK
U2 - 10.1016/j.trsl.2015.09.004
DO - 10.1016/j.trsl.2015.09.004
M3 - Article
C2 - 26432923
AN - SCOPUS:84958029950
SN - 1931-5244
VL - 166
SP - 554
EP - 567
JO - Translational Research
JF - Translational Research
IS - 6
ER -