TY - JOUR
T1 - The RNA-binding protein HuR regulates GATA3 mRNA stability in human breast cancer cell lines
AU - Licata, Lauren A.
AU - Hostetter, Christine L.
AU - Crismale, James
AU - Sheth, Anjali
AU - Keen, Judith Clancy
PY - 2010/7
Y1 - 2010/7
N2 - Meta-analyses of microarray data indicate that GATA3 is co-expressed with estrogen receptor alpha (ER) in breast cancer cells. While the significance of this remains unclear, it is thought that GATA3 may serve as a prognostic indicator in breast tumors and may play a role in ER signaling. Recently, reciprocal regulation of GATA3 and ER transcription was demonstrated, suggesting that control of their expression is intertwined. We sought to determine whether GATA3 and ER expression was also coordinately regulated at other levels. Unlike ER, GATA3 was not under epigenetic control and was not re-expressed in the presence of DNMT or HDAC inhibitors in ER/GATA3-negative cells. However, like ER, these inhibitors decreased GATA3 expression in ER/GATA3-positive cell lines. We have previously reported that ER mRNA stability is increased through binding of the RNA-binding protein HuR/ELAV1 to the 3untranslated region (UTR) and that DNMT and HDAC inhibitors reduce ER expression by altering this interaction. Biotin pull-down assays using a biotinylated GATA3 RNA probe confirmed that HuR also binds to the GATA3 3UTR. Inhibition of HuR using siRNA probes decreased GATA3 mRNA, mRNA stability and protein expression, indicating that HuR plays a role in regulating GATA3 expression. Inhibition of either HuR or GATA3 reduced cell growth of MCF7 cells. Based on our findings, it is clear that coordinate regulation of ER and GATA3 occurs, however differences do exist. These findings may aid in identification of new targets that control cell growth of breast cancer cells.
AB - Meta-analyses of microarray data indicate that GATA3 is co-expressed with estrogen receptor alpha (ER) in breast cancer cells. While the significance of this remains unclear, it is thought that GATA3 may serve as a prognostic indicator in breast tumors and may play a role in ER signaling. Recently, reciprocal regulation of GATA3 and ER transcription was demonstrated, suggesting that control of their expression is intertwined. We sought to determine whether GATA3 and ER expression was also coordinately regulated at other levels. Unlike ER, GATA3 was not under epigenetic control and was not re-expressed in the presence of DNMT or HDAC inhibitors in ER/GATA3-negative cells. However, like ER, these inhibitors decreased GATA3 expression in ER/GATA3-positive cell lines. We have previously reported that ER mRNA stability is increased through binding of the RNA-binding protein HuR/ELAV1 to the 3untranslated region (UTR) and that DNMT and HDAC inhibitors reduce ER expression by altering this interaction. Biotin pull-down assays using a biotinylated GATA3 RNA probe confirmed that HuR also binds to the GATA3 3UTR. Inhibition of HuR using siRNA probes decreased GATA3 mRNA, mRNA stability and protein expression, indicating that HuR plays a role in regulating GATA3 expression. Inhibition of either HuR or GATA3 reduced cell growth of MCF7 cells. Based on our findings, it is clear that coordinate regulation of ER and GATA3 occurs, however differences do exist. These findings may aid in identification of new targets that control cell growth of breast cancer cells.
KW - 3UTR
KW - BT474
KW - ELAV1
KW - GATA-3
KW - HuR
KW - MCF7
KW - MRNA stability
UR - http://www.scopus.com/inward/record.url?scp=77953541017&partnerID=8YFLogxK
U2 - 10.1007/s10549-009-0517-8
DO - 10.1007/s10549-009-0517-8
M3 - Article
C2 - 19728080
AN - SCOPUS:77953541017
SN - 0167-6806
VL - 122
SP - 55
EP - 63
JO - Breast Cancer Research and Treatment
JF - Breast Cancer Research and Treatment
IS - 1
ER -