The relationship between aviation activities and ultrafine particulate matter concentrations near a mid-sized airport

Hsiao Hsien Hsu, Gary Adamkiewicz, E. Andres Houseman, Jose Vallarino, Steven J. Melly, Roger L. Wayson, John D. Spengler, Jonathan I. Levy

Research output: Contribution to journalArticlepeer-review

50 Scopus citations


Aircraft contribute to emissions of ultrafine particulate matter (UFP) and other air pollutants, with corresponding impacts on community-level exposures near active airports. However, it is challenging to isolate the contribution of aircraft from local road traffic and other nearby combustion sources. In this study, we used high-resolution monitoring and flight activity data to quantify contributions from landing and take-off operations (LTO) to UFP concentrations. UFP concentrations were monitored with 1-min resolution at four monitoring sites surrounding T.F. Green Airport in Warwick, RI, in three one-week campaigns across different seasons in 2007 and 2008. Along with pollutant monitoring, wind data were collected and runway-specific LTO data were obtained from airport officials. We developed regression models in which wind speed and direction were included as a nonparametric smooth spatial term using thin-plate splines applied to wind velocity vectors and fitted using linear mixed models. To better pinpoint the timing in the LTO cycle most contributing to elevated concentrations, we used regression models with lag terms for flight activity (ranging from 5min before to 5min after the departure or arrival). Results suggest positive associations between UFP concentrations and LTO activities, especially for departures when an aircraft moves near or passes a monitoring site. Departures of jet engine aircrafts on a runway proximate to one of the monitors have a maximal impact 1min prior to take-off, with median absolute contributions during those minutes of 7400particlescm -3 (range: 1100-70,000particlescm -3). Across all observations, our models indicate median (95th, 99th percentile) percent contribution for all LTO activities of 9.8% (54%, 72%) and 6.6% (39%, 55%) for the two sites proximate to the airport's principal runway, and 4.7% (24%, 36%) and 1.8% (22%, 31%) for the remaining two sites. Our analysis illustrates the complexity of aviation impacts on local air quality and allows for quantification of the marginal contribution of LTO activity relative to other nearby sources.

Original languageEnglish
Pages (from-to)328-337
Number of pages10
JournalAtmospheric Environment
StatePublished - Apr 2012
Externally publishedYes


  • Air quality
  • Aircraft
  • Ground measurements
  • Regression
  • Source attribution
  • Ultrafine particulate matter


Dive into the research topics of 'The relationship between aviation activities and ultrafine particulate matter concentrations near a mid-sized airport'. Together they form a unique fingerprint.

Cite this