The NO–cGMP–PKG pathway in skeletal remodeling

Research output: Contribution to journalReview articlepeer-review

10 Scopus citations

Abstract

The nitric oxide (NO)–cyclic guanosine monophosphate (cGMP)–protein kinase G (PKG) pathway plays a critical role in skeletal homeostasis. Preclinical data using NO and its donors and genetically modified mice demonstrated that NO was required in bone remodeling and partly mediated the anabolic effects of mechanical stimuli and estrogen. However, the off-target effects and tachyphylaxis of NO limit its long-term use, and previous clinical trials using organic nitrates for osteoporosis have been disappointing. Among the other components in the downstream pathway, targeting cGMP-specific phosphodiesterase to promote the NO–cGMP–PKG signal is a viable option. There are growing in vitro and in vivo data that, among many other PDE families, PDE5A is highly expressed in skeletal tissue, and inhibiting PDE5A using currently available PDE5A inhibitors might increase the osteoanabolic signal and protect the skeleton. These preclinical data open the possibility of repurposing PDE5A inhibitors for treating osteoporosis. Further research is needed to address the primary target bone cell of PDE5A inhibition, the contribution of direct and indirect effects of PDE5A inhibition, and the pathophysiological changes in skeletal PDE5A expression in aging and hypogonadal animal models.

Original languageEnglish
Pages (from-to)21-30
Number of pages10
JournalAnnals of the New York Academy of Sciences
Volume1487
Issue number1
DOIs
StatePublished - 11 Jan 2021

Keywords

  • PDE5A
  • PKG
  • bone
  • cGMP
  • nitric oxide
  • soluble guanylate cyclase

Fingerprint

Dive into the research topics of 'The NO–cGMP–PKG pathway in skeletal remodeling'. Together they form a unique fingerprint.

Cite this