The Molecular Gut-Brain Axis in Early Brain Development

Fahim Muhammad, Bufang Fan, Ruoxi Wang, Jiayan Ren, Shuhui Jia, Liping Wang, Zuxin Chen, Xin An Liu

Research output: Contribution to journalReview articlepeer-review

8 Scopus citations

Abstract

Millions of nerves, immune factors, and hormones in the circulatory system connect the gut and the brain. In bidirectional communication, the gut microbiota play a crucial role in the gut-brain axis (GBA), wherein microbial metabolites of the gut microbiota regulate intestinal homeostasis, thereby influencing brain activity. Dynamic changes are observed in gut microbiota as well as during brain development. Altering the gut microbiota could serve as a therapeutic target for treating abnormalities associated with brain development. Neurophysiological development and immune regulatory disorders are affected by changes that occur in gut microbiota composition and function. The molecular aspects relevant to the GBA could help develop targeted therapies for neurodevelopmental diseases. Herein, we review the findings of recent studies on the role of the GBA in its underlying molecular mechanisms in the early stages of brain development. Furthermore, we discuss the bidirectional regulation of gut microbiota from mother to infant and the potential signaling pathways and roles of posttranscriptional modifications in brain functions. Our review summarizes the role of molecular GBA in early brain development and related disorders, providing cues for novel therapeutic targets.

Original languageEnglish
Article number15389
JournalInternational Journal of Molecular Sciences
Volume23
Issue number23
DOIs
StatePublished - Dec 2022
Externally publishedYes

Keywords

  • epigenetics
  • gut-brain axis
  • molecules
  • neurodevelopment
  • vagus nerve

Fingerprint

Dive into the research topics of 'The Molecular Gut-Brain Axis in Early Brain Development'. Together they form a unique fingerprint.

Cite this