Abstract

Mitochondria have diverse functions critical to whole-body metabolic homeostasis. Endurance training alters mitochondrial activity, but systematic characterization of these adaptations is lacking. Here, the Molecular Transducers of Physical Activity Consortium mapped the temporal, multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats trained for 1, 2, 4, or 8 weeks. Training elicited substantial changes in the adrenal gland, brown adipose, colon, heart, and skeletal muscle. The colon showed non-linear response dynamics, whereas mitochondrial pathways were downregulated in brown adipose and adrenal tissues. Protein acetylation increased in the liver, with a shift in lipid metabolism, whereas oxidative proteins increased in striated muscles. Exercise-upregulated networks were downregulated in human diabetes and cirrhosis. Knockdown of the central network protein 17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) elevated oxygen consumption, indicative of metabolic stress. We provide a multi-omic, multi-tissue, temporal atlas of the mitochondrial response to exercise training and identify candidates linked to mitochondrial dysfunction.

Original languageEnglish
Pages (from-to)1411-1429.e10
JournalCell Metabolism
Volume36
Issue number6
DOIs
StatePublished - 4 Jun 2024

Keywords

  • HSD17B10
  • acetylome
  • aerobic
  • exercise
  • metabolism
  • metabolomics
  • mitochondria
  • multi-omics
  • proteomics
  • transcriptomics

Fingerprint

Dive into the research topics of 'The mitochondrial multi-omic response to exercise training across rat tissues'. Together they form a unique fingerprint.

Cite this