TY - JOUR
T1 - The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer's disease
AU - Jazvinšćak Jembrek, Maja
AU - Slade, Neda
AU - Hof, Patrick R.
AU - Šimić, Goran
N1 - Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2018/9
Y1 - 2018/9
N2 - Alzheimer's disease (AD), the most common progressive neurodegenerative disorder, is characterized by severe cognitive decline and personality changes as a result of synaptic and neuronal loss. The defining clinicopathological hallmarks of the disease are deposits of amyloid precursor protein (APP)-derived amyloid-β peptides (Aβ) in the brain parenchyma, and intracellular aggregates of truncated and hyperphosphorylated tau protein in neurofibrillary tangles (NFT). At the cellular and molecular levels, many intertwined pathological mechanisms that relate Aβ and tau pathology with a transcription factor p53 have been revealed. p53 is activated in response to various stressors that threaten genomic stability. Depending on damage severity, it promotes neuronal death or survival, predominantly via transcription-dependent mechanisms that affect expression of apoptosis-related target genes. Levels of p53 are enhanced in the AD brain and maintain sustained tau hyperphosphorylation, whereas intracellular Aβ directly contributes to p53 pool and promotes downstream p53 effects. The review summarizes the role of p53 in neuronal function, discusses the interactions of p53, tau, and Aβ in the normal brain and during the progression of AD pathology, and considers the impact of the most prominent hereditary risk factors of AD on p53/tau/Aβ interactions. A better understanding of this intricate interplay would provide deeper insight into AD pathology and might offer some novel therapeutic targets for the improvement of treatment options. In this regard, drugs and natural compounds targeting the p53 pathway are of growing interest in neuroprotection as they may represent promising therapeutic approaches in the prevention of oxidative stress-dependent pathological processes underlying AD.
AB - Alzheimer's disease (AD), the most common progressive neurodegenerative disorder, is characterized by severe cognitive decline and personality changes as a result of synaptic and neuronal loss. The defining clinicopathological hallmarks of the disease are deposits of amyloid precursor protein (APP)-derived amyloid-β peptides (Aβ) in the brain parenchyma, and intracellular aggregates of truncated and hyperphosphorylated tau protein in neurofibrillary tangles (NFT). At the cellular and molecular levels, many intertwined pathological mechanisms that relate Aβ and tau pathology with a transcription factor p53 have been revealed. p53 is activated in response to various stressors that threaten genomic stability. Depending on damage severity, it promotes neuronal death or survival, predominantly via transcription-dependent mechanisms that affect expression of apoptosis-related target genes. Levels of p53 are enhanced in the AD brain and maintain sustained tau hyperphosphorylation, whereas intracellular Aβ directly contributes to p53 pool and promotes downstream p53 effects. The review summarizes the role of p53 in neuronal function, discusses the interactions of p53, tau, and Aβ in the normal brain and during the progression of AD pathology, and considers the impact of the most prominent hereditary risk factors of AD on p53/tau/Aβ interactions. A better understanding of this intricate interplay would provide deeper insight into AD pathology and might offer some novel therapeutic targets for the improvement of treatment options. In this regard, drugs and natural compounds targeting the p53 pathway are of growing interest in neuroprotection as they may represent promising therapeutic approaches in the prevention of oxidative stress-dependent pathological processes underlying AD.
KW - Alzheimer's disease
KW - Aβ
KW - Neuronal apoptosis
KW - Oxidative stress
KW - Tau
KW - p53
UR - http://www.scopus.com/inward/record.url?scp=85047432342&partnerID=8YFLogxK
U2 - 10.1016/j.pneurobio.2018.05.001
DO - 10.1016/j.pneurobio.2018.05.001
M3 - Review article
C2 - 29733887
AN - SCOPUS:85047432342
SN - 0301-0082
VL - 168
SP - 104
EP - 127
JO - Progress in Neurobiology
JF - Progress in Neurobiology
ER -