TY - JOUR
T1 - The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins
AU - McNulty, Nathan P.
AU - Yatsunenko, Tanya
AU - Hsiao, Ansel
AU - Faith, Jeremiah J.
AU - Muegge, Brian D.
AU - Goodman, Andrew L.
AU - Henrissat, Bernard
AU - Oozeer, Raish
AU - Cools-Portier, Stéphanie
AU - Gobert, Guillaume
AU - Chervaux, Christian
AU - Knights, Dan
AU - Lozupone, Catherine A.
AU - Knight, Rob
AU - Duncan, Alexis E.
AU - Bain, James R.
AU - Muehlbauer, Michael J.
AU - Newgard, Christopher B.
AU - Heath, Andrew C.
AU - Gordon, Jeffrey I.
PY - 2011/10/26
Y1 - 2011/10/26
N2 - Understanding how the human gut microbiota and host are affected by probiotic bacterial strains requires carefully controlled studies in humans and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks before, 7 weeks during, and 4 weeks after consumption of a commercially available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied before and after gavage with all five sequenced FMP strains. No significant changes in bacterial species composition or in the proportional representation of genes encoding known enzymes were observed in the feces of humans consuming the FMP. Only minimal changes in microbiota configuration were noted in mice after single or repeated gavage with the FMP consortium. However, RNA-Seq analysis of fecal samples and follow-up mass spectrometry of urinary metabolites disclosed that introducing the FMP strains into mice results in significant changes in expression of microbiome-encoded enzymes involved in numerous metabolic pathways, most prominently those related to carbohydrate metabolism. B. animalis subsp. lactis, the dominant persistent member of the FMP consortium in gnotobiotic mice, up-regulates a locus in vivo that is involved in the catabolism of xylooligosaccharides, a class of glycans widely distributed in fruits, vegetables, and other foods, underscoring the importance of these sugars to this bacterial species. The human fecal metatranscriptome exhibited significant changes, confined to the period of FMP consumption, that mirror changes in gnotobiotic mice, including those related to plant polysaccharide metabolism. These experiments illustrate a translational research pipeline for characterizing the effects of FMPs on the human gut microbiome.
AB - Understanding how the human gut microbiota and host are affected by probiotic bacterial strains requires carefully controlled studies in humans and in mouse models of the gut ecosystem where potentially confounding variables that are difficult to control in humans can be constrained. Therefore, we characterized the fecal microbiomes and metatranscriptomes of adult female monozygotic twin pairs through repeated sampling 4 weeks before, 7 weeks during, and 4 weeks after consumption of a commercially available fermented milk product (FMP) containing a consortium of Bifidobacterium animalis subsp. lactis, two strains of Lactobacillus delbrueckii subsp. bulgaricus, Lactococcus lactis subsp. cremoris, and Streptococcus thermophilus. In addition, gnotobiotic mice harboring a 15-species model human gut microbiota whose genomes contain 58,399 known or predicted protein-coding genes were studied before and after gavage with all five sequenced FMP strains. No significant changes in bacterial species composition or in the proportional representation of genes encoding known enzymes were observed in the feces of humans consuming the FMP. Only minimal changes in microbiota configuration were noted in mice after single or repeated gavage with the FMP consortium. However, RNA-Seq analysis of fecal samples and follow-up mass spectrometry of urinary metabolites disclosed that introducing the FMP strains into mice results in significant changes in expression of microbiome-encoded enzymes involved in numerous metabolic pathways, most prominently those related to carbohydrate metabolism. B. animalis subsp. lactis, the dominant persistent member of the FMP consortium in gnotobiotic mice, up-regulates a locus in vivo that is involved in the catabolism of xylooligosaccharides, a class of glycans widely distributed in fruits, vegetables, and other foods, underscoring the importance of these sugars to this bacterial species. The human fecal metatranscriptome exhibited significant changes, confined to the period of FMP consumption, that mirror changes in gnotobiotic mice, including those related to plant polysaccharide metabolism. These experiments illustrate a translational research pipeline for characterizing the effects of FMPs on the human gut microbiome.
UR - http://www.scopus.com/inward/record.url?scp=80054960299&partnerID=8YFLogxK
U2 - 10.1126/scitranslmed.3002701
DO - 10.1126/scitranslmed.3002701
M3 - Article
C2 - 22030749
AN - SCOPUS:80054960299
SN - 1946-6234
VL - 3
JO - Science Translational Medicine
JF - Science Translational Medicine
IS - 106
M1 - 106ra106
ER -