TY - JOUR
T1 - The high-density lipoprotein receptor Scarb1 is required for normal bone differentiation in vivo and in vitro
AU - Tourkova, Irina L.
AU - Dobrowolski, Steven F.
AU - Secunda, Cassandra
AU - Zaidi, Mone
AU - Papadimitriou-Olivgeri, Ioanna
AU - Papachristiou, Dionysios J.
AU - Blair, Harry C.
N1 - Publisher Copyright:
© 2019, United States & Canadian Academy of Pathology.
PY - 2019/12/1
Y1 - 2019/12/1
N2 - We examined bone formation and turnover in high-density lipoprotein (HDL) receptor, scavenger receptor type I (Scarb1), knockout animals relative to wild-type (WT) controls. Scarb1−/− animals have elevated serum adrenocorticotropic hormone (ACTH) due to the role of Scarb1 in glucocorticoid production, which might cause increased bone mass. However, this was not observed: Scarb1−/− mice, with ACTH, over 1000 pg/ml relative to wild-type ACTH ~ 25 pg/ml, bone of the knockout animals was osteopenic relative to the wild type at 16 weeks, including bone volume/total volume and trabecular thickness. Other serum parameters of WT and Scarb1−/− animals in cortisol or calcium were unaffected, although Scarb1−/− animals had significantly elevated PTH and decreased phosphate. Osteoblast and osteoclast-related mRNAs extracted from bone were greatly decreased at 8 or 16 weeks. Importantly, in normal ACTH, osteogenic differentiation in vitro from mesenchymal stem cells showed reduced alkaline phosphatase and mineralization. In Scarb1−/− cells relative to WT, mRNAs for RunX2, alkaline phosphatase, type I collagen, and osteocalcin were reduced 40–90%, all p < 0.01, indicating a role of Scarb1 in osteoblast differentiation independent of ACTH. Additionally, in vitro osteoblast differentiation at variable ACTH in WT cells confirmed ACTH increasing bone differentiation, mineralization, alkaline phosphatase, and osteocalcin mRNA at 0–10 nM ACTH, but reduced bone differentiation at 100–1000 nM ACTH. Overall Scarb1−/− animals show inhibited bone formation with age. This may be a mixed effect on direct bone formation and of very high ACTH. Further, this work shows that both ACTH concentration and the HDL receptor Scarb1 play important independent roles in osteoblast differentiation.
AB - We examined bone formation and turnover in high-density lipoprotein (HDL) receptor, scavenger receptor type I (Scarb1), knockout animals relative to wild-type (WT) controls. Scarb1−/− animals have elevated serum adrenocorticotropic hormone (ACTH) due to the role of Scarb1 in glucocorticoid production, which might cause increased bone mass. However, this was not observed: Scarb1−/− mice, with ACTH, over 1000 pg/ml relative to wild-type ACTH ~ 25 pg/ml, bone of the knockout animals was osteopenic relative to the wild type at 16 weeks, including bone volume/total volume and trabecular thickness. Other serum parameters of WT and Scarb1−/− animals in cortisol or calcium were unaffected, although Scarb1−/− animals had significantly elevated PTH and decreased phosphate. Osteoblast and osteoclast-related mRNAs extracted from bone were greatly decreased at 8 or 16 weeks. Importantly, in normal ACTH, osteogenic differentiation in vitro from mesenchymal stem cells showed reduced alkaline phosphatase and mineralization. In Scarb1−/− cells relative to WT, mRNAs for RunX2, alkaline phosphatase, type I collagen, and osteocalcin were reduced 40–90%, all p < 0.01, indicating a role of Scarb1 in osteoblast differentiation independent of ACTH. Additionally, in vitro osteoblast differentiation at variable ACTH in WT cells confirmed ACTH increasing bone differentiation, mineralization, alkaline phosphatase, and osteocalcin mRNA at 0–10 nM ACTH, but reduced bone differentiation at 100–1000 nM ACTH. Overall Scarb1−/− animals show inhibited bone formation with age. This may be a mixed effect on direct bone formation and of very high ACTH. Further, this work shows that both ACTH concentration and the HDL receptor Scarb1 play important independent roles in osteoblast differentiation.
UR - http://www.scopus.com/inward/record.url?scp=85071469212&partnerID=8YFLogxK
U2 - 10.1038/s41374-019-0311-0
DO - 10.1038/s41374-019-0311-0
M3 - Article
C2 - 31467425
AN - SCOPUS:85071469212
SN - 0023-6837
VL - 99
SP - 1850
EP - 1860
JO - Laboratory Investigation
JF - Laboratory Investigation
IS - 12
ER -