Tetrabromobisphenol-A/S and Nine Novel Analogs in Biological Samples from the Chinese Bohai Sea: Implications for Trophic Transfer

Ai Feng Liu, Guang Bo Qu, Miao Yu, Yan Wei Liu, Jian Bo Shi, Gui Bin Jiang

Research output: Contribution to journalArticlepeer-review

107 Scopus citations

Abstract

Tetrabromobisphenol-A/S (TBBPA/S) analogs have raised substantial concern because of their adverse effects and potential bioaccumulative properties, such as TBBPA bis(allyl ether) (TBBPA-BAE) and TBBPA bis(2,3-dibromopropyl ether) (TBBPA-BDBPE). In this study, a comprehensive method for simultaneous determination of TBBPA/S and nine novel analogs, including TBBPA-BAE, TBBPA-BDBPE, TBBPS-BDBPE, TBBPA mono(allyl ether) (TBBPA-MAE), TBBPA mono(2-bromoallyl ether) (TBBPA-MBAE), TBBPA mono(2,3-dibromopropyl ether) (TBBPA-MDBPE), TBBPS-MAE, TBBPS-MBAE, and TBBPS-MDBPE in biological samples was developed. The distribution patterns and trophic transfer properties of TBBPA/S and analogs in various biological samples collected from the Chinese Bohai Sea were then studied in detail. For the first time, TBBPA-MBAE and TBBPS-BDBPE were detected in biological samples and TBBPA-MBAE was identified as a byproduct. The concentrations of TBBPA and analogs ranged from ND (not detected or below the method detection limit) to 2782.8 ng/g lipid weight (lw), and for TBBPS and analogs ranged from ND to 927.8 ng/g lw. High detection frequencies (>86%) for TBBPA, TBBPS and TBBPA-MAE, TBBPA-MDBPE, TBBPS-MAE, TBBPS-MBAE, and TBBPS-MDBPE were obtained. Meanwhile, TBBPA, TBBPS, and these five analogs displayed trophic dilution tendencies due to significantly negative correlations between trophic levels and lipid-corrected concentrations together with the trophic magnification factors (from 0.31 to 0.55). The results also indicated the novel TBBPA-MAE, TBBPA-MBAE, TBBPA-MDBPE, TBBPS-MAE, TBBPS-MBAE, and TBBPS-MDBPE could be generated not only as byproducts, but also as the probable transformation products of commercial TBBPA/S derivatives.

Original languageEnglish
Pages (from-to)4203-4211
Number of pages9
JournalEnvironmental Science and Technology
Volume50
Issue number8
DOIs
StatePublished - 3 May 2016
Externally publishedYes

Fingerprint

Dive into the research topics of 'Tetrabromobisphenol-A/S and Nine Novel Analogs in Biological Samples from the Chinese Bohai Sea: Implications for Trophic Transfer'. Together they form a unique fingerprint.

Cite this