TET1-mediated DNA hydroxymethylation regulates adult remyelination in mice

Sarah Moyon, Rebecca Frawley, Damien Marechal, Dennis Huang, Katy L.H. Marshall-Phelps, Linde Kegel, Sunniva M.K. Bøstrand, Boguslawa Sadowski, Yong Hui Jiang, David A. Lyons, Wiebke Möbius, Patrizia Casaccia

Research output: Contribution to journalArticlepeer-review

41 Scopus citations

Abstract

The mechanisms regulating myelin repair in the adult central nervous system (CNS) are unclear. Here, we identify DNA hydroxymethylation, catalyzed by the Ten-Eleven-Translocation (TET) enzyme TET1, as necessary for myelin repair in young adults and defective in old mice. Constitutive and inducible oligodendrocyte lineage-specific ablation of Tet1 (but not of Tet2), recapitulate this age-related decline in repair of demyelinated lesions. DNA hydroxymethylation and transcriptomic analyses identify TET1-target in adult oligodendrocytes, as genes regulating neuro-glial communication, including the solute carrier (Slc) gene family. Among them, we show that the expression levels of the Na+/K+/Cl transporter, SLC12A2, are higher in Tet1 overexpressing cells and lower in old or Tet1 knockout. Both aged mice and Tet1 mutants also present inefficient myelin repair and axo-myelinic swellings. Zebrafish mutants for slc12a2b also display swellings of CNS myelinated axons. Our findings suggest that TET1 is required for adult myelin repair and regulation of the axon-myelin interface.

Original languageEnglish
Article number3359
JournalNature Communications
Volume12
Issue number1
DOIs
StatePublished - 1 Dec 2021
Externally publishedYes

Fingerprint

Dive into the research topics of 'TET1-mediated DNA hydroxymethylation regulates adult remyelination in mice'. Together they form a unique fingerprint.

Cite this