Temporal and spatial characterization of regenerate bone in the lengthened rabbit tibia

Mark Richards, James A. Goulet, Mitchell B. Schaffler, Steven A. Goldstein

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

A rabbit model of bilateral tibial lengthening was used to investigate temporal and spatial changes in new bone volume and architecture during regenerate bone formation. Tibiae were lengthened 9.0 mm at 0.75 mm/day after a 6-day latency period. Animals were euthanized at four time points, and new bone volume and architecture within the distraction gap were assessed by microcomputed tomography and histomorphometry. New bone formation began before day 18 postsurgery and increased markedly between day 18 (completion of distraction) and day 24. This period of high bone formation activity might therefore be optimal for biologic and mechanical interventions aimed at enhancing bone regeneration. Regions of both endochondral and intramembranous bone formation were observed throughout the consolidation period. Significant increases in bone volume fraction were observed early in the consolidation period and were attributed to significant increases in trabecular thickness. This suggested that increased mineral density in the gap tissue with time was a consequence of increased osteoblast activity and associated trabecular thickening. New bone formation was shown to be highly oriented toward the distraction axis throughout lengthening. More bone formed consistently in lateral and proximal regions of the distraction gap, perhaps due to improved blood supply or progenitor cell availability in these areas. No differences in trabecular architecture were detected between regions having more or less bone volume, suggesting that bony tissue differentiation in all regions of the distraction gap was similar. Homotypical variations in measures of bone architecture were small; thus, these outcome variables seem appropriate for determining the effects of biological and mechanical interventions on bone regeneration in this animal model.

Original languageEnglish
Pages (from-to)1978-1986
Number of pages9
JournalJournal of Bone and Mineral Research
Volume14
Issue number11
DOIs
StatePublished - 1999

Fingerprint

Dive into the research topics of 'Temporal and spatial characterization of regenerate bone in the lengthened rabbit tibia'. Together they form a unique fingerprint.

Cite this