Targeted Degradation of SOS1 Exhibits Potent Anticancer Activity and Overcomes Resistance in KRAS-Mutant Tumors and BCR-ABL-Positive Leukemia

Ziwei Luo, Chencen Lin, Chuwei Yu, Changxian Yuan, Wenyong Wu, Xiaowei Xu, Renhong Sun, Yan Jia, Yafang Wang, Jie Shen, Dingyan Wang, Sinan Wang, Hualiang Jiang, Biao Jiang, Xiaobao Yang, Chengying Xie

Research output: Contribution to journalArticlepeer-review

Abstract

Son of sevenless homolog 1 (SOS1) is an essential guanine nucleotide exchange factor for RAS that also plays a critical role in the activation of the small GTPase RAC mediated by BCR-ABL in leukemogenesis. Despite this, small-molecule inhibitors targeting SOS1 have shown limited efficacy in clinical trials for KRAS-mutant cancers, and their potential as a therapeutic approach for chronic myeloid leukemia (CML) remains largely unexplored. In this study, we developed a potent SOS1 proteolysis targeting chimera (PROTAC) SIAIS562055, which was designed by connecting a CRBN ligand to an analog of the SOS1 inhibitor BI-3406. SIAIS562055 exhibited sustained degradation of SOS1 and inhibition of downstream ERK pathways, resulting in superior antiproliferative activity compared with small-molecule inhibitors. SIAIS562055 also potentiated the activity of both KRAS inhibitors in KRAS-mutant cancers and ABL inhibitors in BCR-ABL-positive CML. In KRAS-mutant xenografts, SIAIS562055 displayed promising antitumor potency as a monotherapy and enhanced ERK inhibition and tumor regression when combined with KRAS inhibitors, overcoming acquired resistance. In CML cells, SIAIS562055 promoted the active uptake of BCR-ABL inhibitors by upregulating the carnitine/organic cation transporter SLC22A4. SIAIS562055 and BCR-ABL inhibitors synergistically enhanced inhibition of ABL phosphorylation and downstream signaling, demonstrating robust antitumor activities in both mouse xenografts and primary samples from patients with CML. In summary, this study suggests that PROTAC-mediated SOS1 degradation represents an effective therapeutic strategy for treating not only KRAS-mutant cancers but also BCR-ABL-harboring leukemia. Significance: The PROTAC SIAIS562055 sustainably degrades SOS1 and inhibits downstream ERK signaling, showing strong antiproliferative activity and synergistic effects with KRAS inhibitors in KRAS-mutant cancers and BCR-ABL inhibitors in chronic myeloid leukemia.

Original languageEnglish
Pages (from-to)101-117
Number of pages17
JournalCancer Research
Volume85
Issue number1
DOIs
StatePublished - 2 Jan 2025
Externally publishedYes

Fingerprint

Dive into the research topics of 'Targeted Degradation of SOS1 Exhibits Potent Anticancer Activity and Overcomes Resistance in KRAS-Mutant Tumors and BCR-ABL-Positive Leukemia'. Together they form a unique fingerprint.

Cite this