TY - JOUR
T1 - Synthesis of peptidyl ene diones
T2 - Selective inactivators of the cysteine proteinases
AU - Darkins, Paul
AU - Gilmore, Brendan F.
AU - Hawthorne, Susan J.
AU - Healy, Adrienne
AU - Moncrieff, Hazel
AU - McCarthy, Noreen
AU - Anthony McKervey, M.
AU - Brömme, Dieter
AU - Pagano, Maurice
AU - Walker, Brian
PY - 2007/3
Y1 - 2007/3
N2 - A series of synthetic peptides in which the C-terminal carboxyl grouping (-CO2H) of each has been chemically converted into a variety of ene dione derivatives (-CO-CH=CH-CO-X; X = -H, -Me, -OBut, -OEt, -OMe, -CO-OMe), have been prepared and tested as inactivators against typical members of the serine and cysteine protease families. For example, the sequences Cbz-Pro-Phe-CH=CH-CO-OEt (I) which fulfils the known primary and secondary specificity requirements of the serine protease chymotrypsin, and Cbz-Phe-Ala-CH=CH-CO-OEt (II) which represents a general recognition sequence for cysteine proteases such as cathepsins B, L and S, have been tested as putative irreversible inactivators of their respective target proteases. It was found that, whereas II, for example, functioned as a time-dependent, irreversible inactivator of each of the cysteine proteases, I behaved only as a modest competitive reversible inhibitor of chymotrypsin. Within the simple ester sequences Cbz-Phe-Ala-CH=CH-CO-R, the rank order of inhibitor effectiveness decreases in the order R = -OMe > -OEt >> -OBut. It was also found that the presence of both an unsaturated double bond and an ester (or α-keto ester) moiety were indispensable for obtaining irreversible inactivators. Of the irreversible inactivators synthesized, Cbz-Phe-Ala-CH=CH-CO-CO-OEt (which contains a highly electrophilic α-keto ester grouping) was found to be the most effective exhibiting, for example, second-order rate constants of approximately 1.7 × 106m-1min-1 and approximately 4.9 × 104m-1min-1 against recombinant human cathepsin S and human spleenic cathepsin B, respectively. This initial study thus holds out the promise that this class of inactivator may well be specific for the cysteine protease subclass.
AB - A series of synthetic peptides in which the C-terminal carboxyl grouping (-CO2H) of each has been chemically converted into a variety of ene dione derivatives (-CO-CH=CH-CO-X; X = -H, -Me, -OBut, -OEt, -OMe, -CO-OMe), have been prepared and tested as inactivators against typical members of the serine and cysteine protease families. For example, the sequences Cbz-Pro-Phe-CH=CH-CO-OEt (I) which fulfils the known primary and secondary specificity requirements of the serine protease chymotrypsin, and Cbz-Phe-Ala-CH=CH-CO-OEt (II) which represents a general recognition sequence for cysteine proteases such as cathepsins B, L and S, have been tested as putative irreversible inactivators of their respective target proteases. It was found that, whereas II, for example, functioned as a time-dependent, irreversible inactivator of each of the cysteine proteases, I behaved only as a modest competitive reversible inhibitor of chymotrypsin. Within the simple ester sequences Cbz-Phe-Ala-CH=CH-CO-R, the rank order of inhibitor effectiveness decreases in the order R = -OMe > -OEt >> -OBut. It was also found that the presence of both an unsaturated double bond and an ester (or α-keto ester) moiety were indispensable for obtaining irreversible inactivators. Of the irreversible inactivators synthesized, Cbz-Phe-Ala-CH=CH-CO-CO-OEt (which contains a highly electrophilic α-keto ester grouping) was found to be the most effective exhibiting, for example, second-order rate constants of approximately 1.7 × 106m-1min-1 and approximately 4.9 × 104m-1min-1 against recombinant human cathepsin S and human spleenic cathepsin B, respectively. This initial study thus holds out the promise that this class of inactivator may well be specific for the cysteine protease subclass.
KW - Cysteine proteinase inactivators
KW - Ene diones
UR - http://www.scopus.com/inward/record.url?scp=34247269043&partnerID=8YFLogxK
U2 - 10.1111/j.1747-0285.2007.00490.x
DO - 10.1111/j.1747-0285.2007.00490.x
M3 - Article
C2 - 17441903
AN - SCOPUS:34247269043
SN - 1747-0277
VL - 69
SP - 170
EP - 179
JO - Chemical Biology and Drug Design
JF - Chemical Biology and Drug Design
IS - 3
ER -