Synaptotagmin-11 is a critical mediator of parkin-linked neurotoxicity and Parkinson's disease-like pathology

Changhe Wang, Xinjiang Kang, Li Zhou, Zuying Chai, Qihui Wu, Rong Huang, Huadong Xu, Meiqin Hu, Xiaoxuan Sun, Suhua Sun, Jie Li, Ruiying Jiao, Panli Zuo, Lianghong Zheng, Zhenyu Yue, Zhuan Zhou

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

Loss-of-function mutations in Parkin are the most common causes of autosomal recessive Parkinson's disease (PD). Many putative substrates of parkin have been reported; their pathogenic roles, however, remain obscure due to poor characterization, particularly in vivo. Here, we show that synaptotagmin-11, encoded by a PD-risk gene SYT11, is a physiological substrate of parkin and plays critical roles in mediating parkin-linked neurotoxicity. Unilateral overexpression of full-length, but not C2B-Truncated, synaptotagmin-11 in the substantia nigra pars compacta (SNpc) impairs ipsilateral striatal dopamine release, causes late-onset degeneration of dopaminergic neurons, and induces progressive contralateral motor abnormalities. Mechanistically, synaptotagmin-11 impairs vesicle pool replenishment and thus dopamine release by inhibiting endocytosis. Furthermore, parkin deficiency induces synaptotagmin-11 accumulation and PD-like neurotoxicity in mouse models, which is reversed by SYT11 knockdown in the SNpc or knockout of SYT11 restricted to dopaminergic neurons. Thus, PD-like neurotoxicity induced by parkin dysfunction requires synaptotagmin-11 accumulation in SNpc dopaminergic neurons.

Original languageEnglish
Article number81
JournalNature Communications
Volume9
Issue number1
DOIs
StatePublished - 1 Dec 2018

Fingerprint

Dive into the research topics of 'Synaptotagmin-11 is a critical mediator of parkin-linked neurotoxicity and Parkinson's disease-like pathology'. Together they form a unique fingerprint.

Cite this