Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity

Timothy A. Blenkinsop, Eric J. Lang

Research output: Contribution to journalArticlepeer-review

50 Scopus citations

Abstract

Cerebellar output is necessary for the ideal implementation of many nervous system functions, particularly motor coordination. A key step toward understanding the generation of this output is characterizing the factors that shape the activity of the cerebellar nuclei (CN). There are four major sources of synaptic input that modulate CN activity; collaterals of climbing and mossy fibers are two, and the remaining two are provided by Purkinje cell (PC) axons in the form of simple spikes (SSs) and complex spikes (CSs). Most hypotheses of cerebellar function focus on SSs as the primary determinant ofCNactivity. However, it is likely that CSs also cause significant direct effects on CN activity, something that is rarely considered. To explore this possibility, we recorded from synaptically connected PC-CN neuron cell pairs in rats. Cross-correlograms of CS and CN activity from such recordings demonstrate that spontaneous CSs have a strong inhibitory effect on CN activity, apparently sufficient, in some cases, to trigger changes in the intrinsic excitability of the CN neuron that long outlast the underlying CS-mediated GABAergic IPSP. Furthermore, many CS-CN correlograms show an initial excitatory response, demonstrating the ability of climbing fiber collaterals to significantly excite CN neurons. A substantial fraction (24%) of correlograms displayed an excitation-inhibition sequence, providing evidence that a CN neuron often receives collaterals from the same olivocerebellar axons as innervate the PCs projecting to it. Thus, excitation followed by inhibition appears to be a hard-wired response pattern ofmany CN neurons to olivocerebellar activity.

Original languageEnglish
Pages (from-to)14708-14720
Number of pages13
JournalJournal of Neuroscience
Volume31
Issue number41
DOIs
StatePublished - 12 Oct 2011
Externally publishedYes

Fingerprint

Dive into the research topics of 'Synaptic action of the olivocerebellar system on cerebellar nuclear spike activity'. Together they form a unique fingerprint.

Cite this