TY - JOUR
T1 - [11C]Harmine Binding to Brain Monoamine Oxidase A
T2 - Test-Retest Properties and Noninvasive Quantification
AU - Zanderigo, Francesca
AU - D’Agostino, Alexandra E.
AU - Joshi, Nandita
AU - Schain, Martin
AU - Kumar, Dileep
AU - Parsey, Ramin V.
AU - DeLorenzo, Christine
AU - Mann, J. John
N1 - Publisher Copyright:
© 2018, World Molecular Imaging Society.
PY - 2018/8/1
Y1 - 2018/8/1
N2 - Purpose: Inhibition of the isoform A of monoamine oxidase (MAO-A), a mitochondrial enzyme catalyzing deamination of monoamine neurotransmitters, is useful in treatment of depression and anxiety disorders. [11C]harmine, a MAO-A PET radioligand, has been used to study mood disorders and antidepressant treatment. However, [11C]harmine binding test-retest characteristics have to date only been partially investigated. Furthermore, since MAO-A is ubiquitously expressed, no reference region is available, thus requiring arterial blood sampling during PET scanning. Here, we investigate [11C]harmine binding measurements test-retest properties; assess effects of using a minimally invasive input function estimation on binding quantification and repeatability; and explore binding potentials estimation using a reference region-free approach. Procedures: Quantification of [11C]harmine distribution volume (VT) via kinetic models and graphical analyses was compared based on absolute test-retest percent difference (TRPD), intraclass correlation coefficient (ICC), and identifiability. The optimal procedure was also used with a simultaneously estimated input function in place of the measured curve. Lastly, an approach for binding potentials quantification in absence of a reference region was evaluated. Results: [11C]harmine VT estimates quantified using arterial blood and kinetic modeling showed average absolute TRPD values of 7.7 to 15.6 %, and ICC values between 0.56 and 0.86, across brain regions. Using simultaneous estimation (SIME) of input function resulted in VT estimates close to those obtained using arterial input function (r = 0.951, slope = 1.073, intercept = − 1.037), with numerically but not statistically higher test-retest difference (range 16.6 to 22.0 %), but with overall poor ICC values, between 0.30 and 0.57. Conclusions: Prospective studies using [11C]harmine are possible given its test-retest repeatability when binding is quantified using arterial blood. Results with SIME of input function show potential for simplifying data acquisition by replacing arterial catheterization with one arterial blood sample at 20 min post-injection. Estimation of [11C]harmine binding potentials remains a challenge that warrants further investigation.
AB - Purpose: Inhibition of the isoform A of monoamine oxidase (MAO-A), a mitochondrial enzyme catalyzing deamination of monoamine neurotransmitters, is useful in treatment of depression and anxiety disorders. [11C]harmine, a MAO-A PET radioligand, has been used to study mood disorders and antidepressant treatment. However, [11C]harmine binding test-retest characteristics have to date only been partially investigated. Furthermore, since MAO-A is ubiquitously expressed, no reference region is available, thus requiring arterial blood sampling during PET scanning. Here, we investigate [11C]harmine binding measurements test-retest properties; assess effects of using a minimally invasive input function estimation on binding quantification and repeatability; and explore binding potentials estimation using a reference region-free approach. Procedures: Quantification of [11C]harmine distribution volume (VT) via kinetic models and graphical analyses was compared based on absolute test-retest percent difference (TRPD), intraclass correlation coefficient (ICC), and identifiability. The optimal procedure was also used with a simultaneously estimated input function in place of the measured curve. Lastly, an approach for binding potentials quantification in absence of a reference region was evaluated. Results: [11C]harmine VT estimates quantified using arterial blood and kinetic modeling showed average absolute TRPD values of 7.7 to 15.6 %, and ICC values between 0.56 and 0.86, across brain regions. Using simultaneous estimation (SIME) of input function resulted in VT estimates close to those obtained using arterial input function (r = 0.951, slope = 1.073, intercept = − 1.037), with numerically but not statistically higher test-retest difference (range 16.6 to 22.0 %), but with overall poor ICC values, between 0.30 and 0.57. Conclusions: Prospective studies using [11C]harmine are possible given its test-retest repeatability when binding is quantified using arterial blood. Results with SIME of input function show potential for simplifying data acquisition by replacing arterial catheterization with one arterial blood sample at 20 min post-injection. Estimation of [11C]harmine binding potentials remains a challenge that warrants further investigation.
KW - Brain
KW - Monoamine oxidase A
KW - Noninvasive estimation
KW - Positron emission tomography
KW - Repeatability
UR - http://www.scopus.com/inward/record.url?scp=85041502692&partnerID=8YFLogxK
U2 - 10.1007/s11307-018-1165-3
DO - 10.1007/s11307-018-1165-3
M3 - Article
C2 - 29423903
AN - SCOPUS:85041502692
SN - 1536-1632
VL - 20
SP - 667
EP - 681
JO - Molecular Imaging and Biology
JF - Molecular Imaging and Biology
IS - 4
ER -