SUITer: An Automated Method for Improving Segmentation of Infratentorial Structures at Ultra-High-Field MRI

Mohamed Mounir El Mendili, Maria Petracca, Kornelius Podranski, Lazar Fleysher, Sirio Cocozza, Matilde Inglese

Research output: Contribution to journalArticlepeer-review

4 Scopus citations


BACKGROUND AND PURPOSE: The advent of high and ultra-high-field MRI has significantly improved the investigation of infratentorial structures by providing high-resolution images. However, none of the publicly available methods for cerebellar image analysis has been optimized for high-resolution images yet. METHODS: We present the implementation of an automated algorithm—SUITer (spatially unbiased infratentorial for enhanced resolution) method for cerebellar lobules parcellation on high-resolution MR images acquired at both 3 and 7T MRI. SUITer was validated on five manually segmented data and compared with SUIT, FreeSurfer, and convolutional neural networks (CNN). SUITer was then applied to 3 and 7T MR images from 10 multiple sclerosis (MS) patients and 10 healthy controls (HCs). RESULTS: The difference in volumes estimation for the cerebellar grey matter (GM), between the manual segmentation (ground truth), SUIT, CNN, and SUITer was reduced when computed by SUITer compared to SUIT (5.56 vs. 29.23 mL) and CNN (5.56 vs. 9.43 mL). FreeSurfer showed low volumes difference (3.56 mL). SUITer segmentations showed a high correlation (R2 =.91) and a high overlap with manual segmentations for cerebellar GM (83.46%). SUITer also showed low volumes difference (7.29 mL), high correlation (R2 =.99), and a high overlap (87.44%) for cerebellar GM segmentations across magnetic fields. SUITer showed similar cerebellar GM volume differences between MS patients and HC at both 3T and 7T (7.69 and 7.76 mL, respectively). CONCLUSIONS: SUITer provides accurate segmentations of infratentorial structures across different resolutions and MR fields.

Original languageEnglish
Pages (from-to)28-39
Number of pages12
JournalJournal of Neuroimaging
Issue number1
StatePublished - 1 Jan 2020


  • brainstem
  • cerebellum
  • high spatial resolution
  • parcellation
  • ultra-high-field MRI


Dive into the research topics of 'SUITer: An Automated Method for Improving Segmentation of Infratentorial Structures at Ultra-High-Field MRI'. Together they form a unique fingerprint.

Cite this