TY - JOUR
T1 - Study on up-conversion emissions of Yb3+/Tm3+ co-doped GdF3 and NaGdF4
AU - Cao, Chunyan
AU - Qin, Weiping
AU - Zhang, Jisen
PY - 2010/2/15
Y1 - 2010/2/15
N2 - The Yb3+/Tm3+ co-doped GdF3 and NaGdF4 samples were synthesized through a combination method of a co-precipitation and an argon atmosphere annealing procedures. X-ray diffraction analysis indicated that the Yb3+/Tm3+ co-doped GdF3 sample crystallized well and was orthorhombic phase, and the Yb3+/Tm3+ co-doped NaGdF4 sample was hexagonal phase. With a 980-nm semiconductor continuous wave laser diode as the excitation source, the up-conversion emission spectra of the two samples in the wavelength range of 240-510 nm were recorded. In the up-conversion emissions of the samples, Yb3+ transferred energies to Tm3+ resulting in their ultraviolet, violet, and blue up-conversion emissions. And, Tm3+ simultaneously transferred energies to Gd3+, which finally resulted in ultraviolet up-conversion emissions of Gd3+. The study on the excitation power dependence of up-conversion fluorescence intensity indicated that there were multi-photon (three-, four-, five-, and six-) processes in the up-conversion emissions of the samples. And the up-conversion emissions of Gd3+ and Tm3+ in the Yb3+/Tm3+ co-doped GdF3 and NaGdF4 samples were compared studied, too.
AB - The Yb3+/Tm3+ co-doped GdF3 and NaGdF4 samples were synthesized through a combination method of a co-precipitation and an argon atmosphere annealing procedures. X-ray diffraction analysis indicated that the Yb3+/Tm3+ co-doped GdF3 sample crystallized well and was orthorhombic phase, and the Yb3+/Tm3+ co-doped NaGdF4 sample was hexagonal phase. With a 980-nm semiconductor continuous wave laser diode as the excitation source, the up-conversion emission spectra of the two samples in the wavelength range of 240-510 nm were recorded. In the up-conversion emissions of the samples, Yb3+ transferred energies to Tm3+ resulting in their ultraviolet, violet, and blue up-conversion emissions. And, Tm3+ simultaneously transferred energies to Gd3+, which finally resulted in ultraviolet up-conversion emissions of Gd3+. The study on the excitation power dependence of up-conversion fluorescence intensity indicated that there were multi-photon (three-, four-, five-, and six-) processes in the up-conversion emissions of the samples. And the up-conversion emissions of Gd3+ and Tm3+ in the Yb3+/Tm3+ co-doped GdF3 and NaGdF4 samples were compared studied, too.
KW - Ultraviolet emission
KW - Up-conversion
KW - Yb/Tm co-doped
UR - http://www.scopus.com/inward/record.url?scp=70549097072&partnerID=8YFLogxK
U2 - 10.1016/j.optcom.2009.10.097
DO - 10.1016/j.optcom.2009.10.097
M3 - Article
AN - SCOPUS:70549097072
SN - 0030-4018
VL - 283
SP - 547
EP - 550
JO - Optics Communications
JF - Optics Communications
IS - 4
ER -