Structure–function models for estimating retinal ganglion cell count using steady-state pattern electroretinography and optical coherence tomography in glaucoma suspects and preperimetric glaucoma: an electrophysiological pilot study

Derek Orshan, Andrew Tirsi, Hosam Sheha, Vasiliki Gliagias, Joby Tsai, Sung Chul Park, Stephen A. Obstbaum, Celso Tello

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Purpose: To derive and validate structure–function models for estimating retinal ganglion cell (RGC) count using optical coherence tomography (OCT) and steady-state pattern electroretinography (ssPERG) parameters in glaucoma suspects (GS) and preperimetric glaucoma (PPG). Methods: In this prospective cross-sectional study, 25 subjects (50 eyes) were recruited at the Manhattan Eye, Ear, and Throat Hospital. Subjects underwent comprehensive eye examinations, OCT, standard automated perimetry (SAP), and ssPERG testing. Eyes were divided into three groups based on the Global Glaucoma Staging System: healthy (N = 30), GS (N = 10), and PPG (N = 10) eyes. The combined structure–function index (CSFI), which estimates retinal ganglion cell count (eRGCCSFI) from SAP and OCT parameters, was calculated in each study subject. Two prediction formulas were derived using a generalized linear mixed model (GLMM) to predict eRGCCSFI from ssPERG parameters, age, and average retinal nerve fiber layer thickness (ARNFLT) in 30 eyes selected at random (training group). GLMM predicted values were cross-validated with the remaining 20 eyes (validation group). Results: The ARNFLT, ssPERG parameters magnitude (Mag) and magnitudeD (MagD), and eRGCCSFI were significantly different among study groups (ANOVA p ≤ 0.001). Pearson correlations demonstrated significant associations among ARNFLT, ssPERG parameters, and eRGCCSFI (r2 ≥ 0.31, p < 0.001). Two GLMMs predicted eRGCCSFI from Mag (eRGCMag) and MagD (eRGCMagD), respectively, with significant equations (F(3,18), F(3,19) ≥ 58.37, R2 = 0.90, p < 0.001). eRGCMag and eRGCMagD in the validation group (R2 = 0.89) correlated with eRGCCSFI similarly to the training group. Multivariate pairwise comparisons revealed that eRGCMag and eRGCMagD distinguished between healthy, GS, and PPG eyes (p ≤ 0.035), whereas independent Mag, MagD, and ARNFLT measures did not distinguish between GS and PPG eyes. Conclusion: This pilot study offers the first combined structure–function models for estimating RGC count using ssPERG parameters. RGC counts estimated with these models were generalizable, strongly associated with CSFI estimates, and performed better than individual ssPERG and OCT measures in distinguishing healthy, GS, and PPG eyes.

Original languageEnglish
Pages (from-to)221-235
Number of pages15
JournalDocumenta Ophthalmologica
Volume145
Issue number3
DOIs
StatePublished - Dec 2022
Externally publishedYes

Keywords

  • Generalized linear mixed model
  • Glaucoma
  • OCT
  • PERG
  • Retinal ganglion cell

Fingerprint

Dive into the research topics of 'Structure–function models for estimating retinal ganglion cell count using steady-state pattern electroretinography and optical coherence tomography in glaucoma suspects and preperimetric glaucoma: an electrophysiological pilot study'. Together they form a unique fingerprint.

Cite this