Structural modeling of a novel SLC38A8 mutation that causes foveal hypoplasia

Marcus A. Toral, Gabriel Velez, Katherine Boudreault, Kellie A. Schaefer, Yu Xu, Norman Saffra, Alexander G. Bassuk, Stephen H. Tsang, Vinit B. Mahajan

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Background: Foveal hypoplasia (FH) in the absence of albinism, aniridia, microphthalmia, or achromatopsia is exceedingly rare, and the molecular basis for the disorder remains unknown. FH is characterized by the absence of both the retinal foveal pit and avascular zone, but with preserved retinal architecture. SLC38A8 encodes a sodium-coupled neutral amino acid transporter with a preference for glutamate as a substrate. SLC38A8 has been linked to FH. Here, we describe a novel mutation to SLC38A8 which causes FH, and report the novel use of OCT-angiography to improve the precision of FH diagnosis. More so, we used computational modeling to explore possible functional effects of known SLC38A8 mutations. Methods: Fundus autofluorescence, SD-OCT, and OCT-angiography were used to make the clinical diagnosis. Whole-exome sequencing led to the identification of a novel disease-causing variant in SLC38A8. Computational modeling approaches were used to visualize known SLC38A8 mutations, as well as to predict mutation effects on transporter structure and function. Results: We identified a novel point mutation in SLC38A8 that causes FH. A conclusive diagnosis was made using OCT-angiography, which more clearly revealed retinal vasculature penetrating into the foveal region. Structural modeling of the channel showed the mutation was near previously published mutations, clustered on an extracellular loop. Our modeling also predicted that the mutation destabilizes the protein by altering the electrostatic potential within the channel pore. Conclusion: Our results demonstrate a novel use for OCT-angiography in confirming FH, and also uncover genotype–phenotype correlations of FH-linked SLC38A8 mutations.

Original languageEnglish
Pages (from-to)202-209
Number of pages8
JournalMolecular genetics & genomic medicine
Volume5
Issue number3
DOIs
StatePublished - May 2017
Externally publishedYes

Keywords

  • OCT-angiography
  • SLC38A8
  • foveal hypoplasia
  • precision medicine
  • structural modeling

Fingerprint

Dive into the research topics of 'Structural modeling of a novel SLC38A8 mutation that causes foveal hypoplasia'. Together they form a unique fingerprint.

Cite this