Stable expression and characterization of recombinant human heteromeric N-methyl-D-aspartate receptor subtypes NMDAR1A/2A and NMDAR1A/2B in mammalian cells

M. A. Varney, C. Jachec, C. Deal, S. D. Hess, L. P. Daggett, R. Skvoretz, M. Urcan, J. H. Morrison, T. Moran, E. C. Johnson, G. Veliçelebi

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

The electrophysiological and pharmacological properties of two mammalian cell lines stably transfected with cDNAs encoding recombinant human N- methyl-o-aspartate (NMDA) receptor subtypes NMDAR1A/2A and NMDAR1A/2B are described. In whole-cell electrophysiological recordings, application of NMDA/glycine elicited inward currents at negative holding potentials in human NMDAR1A/2A (hNMDAR1A/2A)- and hNMDAR1A/2B-expressing cells. The current- voltage relationships determined in both cell lines in the presence and absence of external Mg1+ were similar to those observed with recombinant rat NMDA receptors. Power spectra calculated from NMDA/glycine-induced currents for both NMDA receptor expressing cell lines suggested a kinetically homogeneous population of channels. Immunoprecipitation with an antiNMDAR1A antibody coprecipitated the corresponding NMDAR2 subunit with the NMDAR1A, suggesting that heteromeric complexes are formed in these stable cell lines. Stimulation of NMDA receptors evoked an increase in intracellular Ca++, which was used to characterize their pharmacological properties. NMDA displayed less intrinsic activity than did glutamate in both NMDA receptor- expressing cell lines and was a 4-fold more potent agonist at hNMDAR1A/2B than hNMDAR1A/2A. NMDA/glycine-evoked increases in Ca++ levels were inhibited by CGS 19755, (±)-3-(2-carboxypiperazin-4-yl)propyl1-phosphonate, MK-801, ketamine and ifenprodil. (±)-3-(2-Carboxypiperazin-4-yl)propyl-l- phosphonate was a 3-fold more potent antagonist at hNMDAR1N/2A than hNMDAR1A/2B, whereas ifenprodil was markedly more selective toward hNMDAR1A/2B, being 250-fold more potent than against hNMDARIA/2A. These data suggest that cells stably expressing recombinant heteromeric hNMDAR1A/2A and hNMDAR1A/2B represent pharmacologically valid experimental systems to study human NMDA receptors.

Original languageEnglish
Pages (from-to)367-378
Number of pages12
JournalJournal of Pharmacology and Experimental Therapeutics
Volume279
Issue number1
StatePublished - Oct 1996

Fingerprint

Dive into the research topics of 'Stable expression and characterization of recombinant human heteromeric N-methyl-D-aspartate receptor subtypes NMDAR1A/2A and NMDAR1A/2B in mammalian cells'. Together they form a unique fingerprint.

Cite this