Abstract
Here, we report a method to specifically bind liposomal radiopharmaceuticals to a CoCrMo alloy, which can be used in arterial stents, via an irreversible inverse electron-demand Diels–Alder reaction. Inspired by recent accomplishments in pre-targeted imaging using tetrazine-trans-cyclooctene click chemistry, we synthesized 89Zr-labeled trans-cyclooctene-functionalized liposomal nanoparticles, which were validated on a tetrazine-appended polydopamine-coated CoCrMo surface. In efforts to ultimately translate this new material to biomedical applications, we compared the ability of 89Zr-TCO–liposomal nanoparticles (89Zr-TCO-LNP) to be immobilized on the tetrazine surface to the control suspensions of non-TCO functionalized 89Zr-liposomal nanoparticles. Ultimately, this platform technology could result in a systemic decrease of the radiotherapeutic dose deposited in non-targeted tissues by specific removal of long-circulating liposomal radiopharmaceuticals from the blood pool.
Original language | English |
---|---|
Pages (from-to) | 615-619 |
Number of pages | 5 |
Journal | ChemistryOpen |
Volume | 6 |
Issue number | 5 |
DOIs | |
State | Published - Oct 2017 |
Keywords
- CoCrMo alloys
- Zr
- click chemistry
- liposomes
- tetrazine
- trans-cyclooctene