TY - JOUR
T1 - Sox2 is required for tumor development and cancer cell proliferation in osteosarcoma
AU - Maurizi, Giulia
AU - Verma, Narendra
AU - Gadi, Abhilash
AU - Mansukhani, Alka
AU - Basilico, Claudio
N1 - Publisher Copyright:
© 2018, Macmillan Publishers Limited, part of Springer Nature.
PY - 2018/8/16
Y1 - 2018/8/16
N2 - The stem cell transcription factor Sox2 is highly expressed in many cancers where it is thought to mark cancer stem cells (CSCs). In osteosarcomas, the most common bone malignancy, high Sox2 expression marks and maintains a fraction of tumor-initiating cells that show all the properties of CSC. Knockdown of Sox2 expression abolishes tumorigenicity and suppresses the CSC phenotype. Here we show that, in a mouse model of osteosarcoma, osteoblast-specific Sox2 conditional knockout (CKO) causes a drastic reduction in the frequency and onset of tumors. The rare tumors detected in the Sox2 CKO animals were all Sox2 positive, indicating that they arose from cells that had escaped Sox2 deletion. Furthermore, Sox2 inactivation in cultured osteosarcoma cells by CRISPR/CAS technology leads to a loss of viability and proliferation of the entire cell population. Inactivation of the YAP gene, a major Hippo pathway effector which is a direct Sox2 target, causes similar results and YAP overexpression rescues cells from the lethality caused by Sox2 inactivation. These effects were osteosarcoma-specific, suggesting a mechanism of cell “addiction” to Sox2-initiated pathways. The requirement of Sox2 for osteosarcoma formation as well as for the survival of the tumor cells suggests that disruption of Sox2-initiated pathways could be an effective strategy for the treatment of osteosarcoma.
AB - The stem cell transcription factor Sox2 is highly expressed in many cancers where it is thought to mark cancer stem cells (CSCs). In osteosarcomas, the most common bone malignancy, high Sox2 expression marks and maintains a fraction of tumor-initiating cells that show all the properties of CSC. Knockdown of Sox2 expression abolishes tumorigenicity and suppresses the CSC phenotype. Here we show that, in a mouse model of osteosarcoma, osteoblast-specific Sox2 conditional knockout (CKO) causes a drastic reduction in the frequency and onset of tumors. The rare tumors detected in the Sox2 CKO animals were all Sox2 positive, indicating that they arose from cells that had escaped Sox2 deletion. Furthermore, Sox2 inactivation in cultured osteosarcoma cells by CRISPR/CAS technology leads to a loss of viability and proliferation of the entire cell population. Inactivation of the YAP gene, a major Hippo pathway effector which is a direct Sox2 target, causes similar results and YAP overexpression rescues cells from the lethality caused by Sox2 inactivation. These effects were osteosarcoma-specific, suggesting a mechanism of cell “addiction” to Sox2-initiated pathways. The requirement of Sox2 for osteosarcoma formation as well as for the survival of the tumor cells suggests that disruption of Sox2-initiated pathways could be an effective strategy for the treatment of osteosarcoma.
UR - http://www.scopus.com/inward/record.url?scp=85046619813&partnerID=8YFLogxK
U2 - 10.1038/s41388-018-0292-2
DO - 10.1038/s41388-018-0292-2
M3 - Article
C2 - 29743593
AN - SCOPUS:85046619813
SN - 0950-9232
VL - 37
SP - 4626
EP - 4632
JO - Oncogene
JF - Oncogene
IS - 33
ER -