TY - JOUR
T1 - Soluble TREM2 in CSF and its association with other biomarkers and cognition in autosomal-dominant Alzheimer's disease
T2 - a longitudinal observational study
AU - Dominantly Inherited Alzheimer Network
AU - Morenas-Rodríguez, Estrella
AU - Li, Yan
AU - Nuscher, Brigitte
AU - Franzmeier, Nicolai
AU - Xiong, Chengjie
AU - Suárez-Calvet, Marc
AU - Fagan, Anne M.
AU - Schultz, Stephanie
AU - Gordon, Brian A.
AU - Benzinger, Tammie L.S.
AU - Hassenstab, Jason
AU - McDade, Eric
AU - Feederle, Regina
AU - Karch, Celeste M.
AU - Schlepckow, Kai
AU - Morris, John C.
AU - Kleinberger, Gernot
AU - Nellgard, Bengt
AU - Vöglein, Jonathan
AU - Blennow, Kaj
AU - Zetterberg, Henrik
AU - Ewers, Michael
AU - Jucker, Mathias
AU - Levin, Johannes
AU - Bateman, Randall J.
AU - Haass, Christian
AU - Adams, Sarah
AU - Allegri, Ricardo
AU - Araki, Aki
AU - Barthelemy, Nicolas
AU - Bechara, Jacob
AU - Berman, Sarah
AU - Bodge, Courtney
AU - Brandon, Susan
AU - Brooks, William (Bill)
AU - Brosch, Jared
AU - Buck, Jill
AU - Buckles, Virginia
AU - Carter, Kathleen
AU - Cash, Lisa
AU - Chen, Charlie
AU - Chhatwal, Jasmeer
AU - Chrem, Patricio
AU - Chua, Jasmin
AU - Chui, Helena
AU - Cruchaga, Carlos
AU - Day, Gregory S.
AU - De La Cruz, Chrismary
AU - Goate, Alison
AU - Renton, Alan
N1 - Funding Information:
Data collection and sharing for this project was supported by The Dominantly Inherited Alzheimer's Network (DIAN, UF1AG032438) funded by the National Institute on Aging, the German Center for Neurodegenerative Diseases, Raul Carrera Institute for Neurological Research, Partial support by the Research and Development Grants for Dementia from Japan Agency for Medical Research and Development, and the Korea Health Technology R&D Project through the Korea Health Industry Development Institute. This manuscript has been reviewed by DIAN study investigators for scientific content and consistency of data interpretation with previous DIAN study publications. We acknowledge the altruism of the participants and their families and contributions of the DIAN research and support staff at each of the participating sites for their contributions to this study. We thank Lis de Weerd and Sophie Robinson for critically reading the manuscript. TREM2 related work is supported by a Koselleck Project grant (HA1737/16-1) awarded to CH and DIAN (UF1AG032438; principal investigator, RB). CH and RF are supported by the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy; ID 390857198). HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (2018-02532), the European Research Council (681712), and Swedish State Support for Clinical Research (ALFGBG-720931). MS-C is funded by the European Research Council under the European Union's Horizon 2020 research and innovation programme (grant agreement number 948677). MS-C also receives funding from the Instituto de Salud Carlos III (PI19/00155) and from the Spanish Ministry of Science, Innovation and Universities (Juan de la Cierva Programme grant IJC2018-037478-I). KB is supported by the Swedish Research Council (2017-00915), the Alzheimer Drug Discovery Foundation (RDAPB-201809-2016615), the Swedish Alzheimer Foundation (AF-742881), Hjärnfonden (FO2017-0243), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (ALFGBG-715986), the European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236), the National Institute of Health (grant number 1R01AG068398-01), and the Alzheimer's Association 2021 Zenith Award (ZEN-21-848495).
Publisher Copyright:
© 2022 Elsevier Ltd
PY - 2022/4
Y1 - 2022/4
N2 - Background: Therapeutic modulation of TREM2-dependent microglial function might provide an additional strategy to slow the progression of Alzheimer's disease. Although studies in animal models suggest that TREM2 is protective against Alzheimer's pathology, its effect on tau pathology and its potential beneficial role in people with Alzheimer's disease is still unclear. Our aim was to study associations between the dynamics of soluble TREM2, as a biomarker of TREM2 signalling, and amyloid β (Aβ) deposition, tau-related pathology, neuroimaging markers, and cognitive decline, during the progression of autosomal dominant Alzheimer's disease. Methods: We did a longitudinal analysis of data from the Dominantly Inherited Alzheimer Network (DIAN) observational study, which includes families with a history of autosomal dominant Alzheimer's disease. Participants aged over 18 years who were enrolled in DIAN between Jan 1, 2009, and July 31, 2019, were categorised as either carriers of pathogenic variants in PSEN1, PSEN2, and APP genes (n=155) or non-carriers (n=93). We measured amounts of cleaved soluble TREM2 using a novel immunoassay in CSF samples obtained every 2 years from participants who were asymptomatic (Clinical Dementia Rating [CDR]=0) and annually for those who were symptomatic (CDR>0). CSF concentrations of Aβ40, Aβ42, total tau (t-tau), and tau phosphorylated on threonine 181 (p-tau) were measured by validated immunoassays. Predefined neuroimaging measurements were total cortical uptake of Pittsburgh compound B PET (PiB-PET), cortical thickness in the precuneus ascertained by MRI, and hippocampal volume determined by MRI. Cognition was measured using a validated cognitive composite (including DIAN word list test, logical memory delayed recall, digit symbol coding test [total score], and minimental status examination). We based our statistical analysis on univariate and bivariate linear mixed effects models. Findings: In carriers of pathogenic variants, a high amyloid burden at baseline, represented by low CSF Aβ42 (β=–4·28 × 10–2 [SE 0·013], p=0·0012), but not high cortical uptake in PiB-PET (β=–5·51 × 10–3 [0·011], p=0·63), was the only predictor of an augmented annual rate of subsequent increase in soluble TREM2. Augmented annual rates of increase in soluble TREM2 were associated with a diminished rate of decrease in amyloid deposition, as measured by Aβ42 in CSF (r=0·56 [0·22], p=0·011), in presymptomatic carriers of pathogenic variants, and with diminished annual rate of increase in PiB-PET (r=–0·67 [0·25], p=0·0060) in symptomatic carriers of pathogenic variants. Presymptomatic carriers of pathogenic variants with annual rates of increase in soluble TREM2 lower than the median showed a correlation between enhanced annual rates of increase in p-tau in CSF and augmented annual rates of increase in PiB-PET signal (r=0·45 [0·21], p=0·035), that was not observed in those with rates of increase in soluble TREM2 higher than the median. Furthermore, presymptomatic carriers of pathogenic variants with rates of increase in soluble TREM2 above or below the median had opposite associations between Aβ42 in CSF and PiB-PET uptake when assessed longitudinally. Augmented annual rates of increase in soluble TREM2 in presymptomatic carriers of pathogenic variants correlated with decreased cortical shrinkage in the precuneus (r=0·46 [0·22]), p=0·040) and diminished cognitive decline (r=0·67 [0·22], p=0·0020). Interpretation: Our findings in autosomal dominant Alzheimer's disease position the TREM2 response within the amyloid cascade immediately after the first pathological changes in Aβ aggregation and further support the role of TREM2 on Aβ plaque deposition and compaction. Furthermore, these findings underpin a beneficial effect of TREM2 on Aβ deposition, Aβ-dependent tau pathology, cortical shrinkage, and cognitive decline. Soluble TREM2 could, therefore, be a key marker for clinical trial design and interpretation. Efforts to develop TREM2-boosting therapies are ongoing. Funding: German Research Foundation, US National Institutes of Health.
AB - Background: Therapeutic modulation of TREM2-dependent microglial function might provide an additional strategy to slow the progression of Alzheimer's disease. Although studies in animal models suggest that TREM2 is protective against Alzheimer's pathology, its effect on tau pathology and its potential beneficial role in people with Alzheimer's disease is still unclear. Our aim was to study associations between the dynamics of soluble TREM2, as a biomarker of TREM2 signalling, and amyloid β (Aβ) deposition, tau-related pathology, neuroimaging markers, and cognitive decline, during the progression of autosomal dominant Alzheimer's disease. Methods: We did a longitudinal analysis of data from the Dominantly Inherited Alzheimer Network (DIAN) observational study, which includes families with a history of autosomal dominant Alzheimer's disease. Participants aged over 18 years who were enrolled in DIAN between Jan 1, 2009, and July 31, 2019, were categorised as either carriers of pathogenic variants in PSEN1, PSEN2, and APP genes (n=155) or non-carriers (n=93). We measured amounts of cleaved soluble TREM2 using a novel immunoassay in CSF samples obtained every 2 years from participants who were asymptomatic (Clinical Dementia Rating [CDR]=0) and annually for those who were symptomatic (CDR>0). CSF concentrations of Aβ40, Aβ42, total tau (t-tau), and tau phosphorylated on threonine 181 (p-tau) were measured by validated immunoassays. Predefined neuroimaging measurements were total cortical uptake of Pittsburgh compound B PET (PiB-PET), cortical thickness in the precuneus ascertained by MRI, and hippocampal volume determined by MRI. Cognition was measured using a validated cognitive composite (including DIAN word list test, logical memory delayed recall, digit symbol coding test [total score], and minimental status examination). We based our statistical analysis on univariate and bivariate linear mixed effects models. Findings: In carriers of pathogenic variants, a high amyloid burden at baseline, represented by low CSF Aβ42 (β=–4·28 × 10–2 [SE 0·013], p=0·0012), but not high cortical uptake in PiB-PET (β=–5·51 × 10–3 [0·011], p=0·63), was the only predictor of an augmented annual rate of subsequent increase in soluble TREM2. Augmented annual rates of increase in soluble TREM2 were associated with a diminished rate of decrease in amyloid deposition, as measured by Aβ42 in CSF (r=0·56 [0·22], p=0·011), in presymptomatic carriers of pathogenic variants, and with diminished annual rate of increase in PiB-PET (r=–0·67 [0·25], p=0·0060) in symptomatic carriers of pathogenic variants. Presymptomatic carriers of pathogenic variants with annual rates of increase in soluble TREM2 lower than the median showed a correlation between enhanced annual rates of increase in p-tau in CSF and augmented annual rates of increase in PiB-PET signal (r=0·45 [0·21], p=0·035), that was not observed in those with rates of increase in soluble TREM2 higher than the median. Furthermore, presymptomatic carriers of pathogenic variants with rates of increase in soluble TREM2 above or below the median had opposite associations between Aβ42 in CSF and PiB-PET uptake when assessed longitudinally. Augmented annual rates of increase in soluble TREM2 in presymptomatic carriers of pathogenic variants correlated with decreased cortical shrinkage in the precuneus (r=0·46 [0·22]), p=0·040) and diminished cognitive decline (r=0·67 [0·22], p=0·0020). Interpretation: Our findings in autosomal dominant Alzheimer's disease position the TREM2 response within the amyloid cascade immediately after the first pathological changes in Aβ aggregation and further support the role of TREM2 on Aβ plaque deposition and compaction. Furthermore, these findings underpin a beneficial effect of TREM2 on Aβ deposition, Aβ-dependent tau pathology, cortical shrinkage, and cognitive decline. Soluble TREM2 could, therefore, be a key marker for clinical trial design and interpretation. Efforts to develop TREM2-boosting therapies are ongoing. Funding: German Research Foundation, US National Institutes of Health.
UR - http://www.scopus.com/inward/record.url?scp=85126372614&partnerID=8YFLogxK
U2 - 10.1016/S1474-4422(22)00027-8
DO - 10.1016/S1474-4422(22)00027-8
M3 - Article
C2 - 35305339
AN - SCOPUS:85126372614
SN - 1474-4422
VL - 21
SP - 329
EP - 341
JO - The Lancet Neurology
JF - The Lancet Neurology
IS - 4
ER -