Software development for severe burn diagnosis and autologous skin substitute production

Guillaume Mestrallet

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Background: The gold-standard for the management of patients affected by large-surface full thickness burns is autologous skin graft. When burns affect <40% total body surface area (TBSA), meshed skin samples harvested from non-affected donor sites can be used as grafts. In more severe cases corresponding to burns affecting >40% TBSA), the donor site surfaces are insufficient. The alternative grafting strategy uses bioengineered skin substitutes that are generated using the own keratinocytes of the patient after ex vivo expansion. Today, although the technology for producing autografts is not new, there is no way to accurately assess burned areas and predict the number of cells necessary to produce the graft. Methods: Optimal setup of the bioengineering process involved determination of the required graft surface, adjustment of cell quantities, and control of the timing necessary for production. Accordingly, tools to assist the design of personalized protocols will certainly contribute to care quality and cost limitation. Results: The article describes the principle of a software-assisted calculation of the burn size, the required graft surface and keratinocyte numbers needed, according to specific patient clinical characteristics. The software also offers assistance to estimate the Baux score, a method that has been proposed to link the severity of burn injuries and the prognosis for the patient. Conclusion: This software provides a principle of assisted burned patient diagnose and skin substitute bioengineering process. The software development may facilitate the design of personalized protocols for skin regenerative cell therapies.

Original languageEnglish
Article number100069
JournalComputer Methods and Programs in Biomedicine Update
Volume2
DOIs
StatePublished - Jan 2022
Externally publishedYes

Keywords

  • Bioengineering
  • Burns
  • Keratinocytes
  • Skin graft
  • Skin substitute
  • Software

Fingerprint

Dive into the research topics of 'Software development for severe burn diagnosis and autologous skin substitute production'. Together they form a unique fingerprint.

Cite this