TY - JOUR
T1 - Single Nucleotide Polymorphisms (SNPs) in PRKG1 & SPATA13 -AS1 are associated with bronchodilator response
T2 - A pilot study during acute asthma exacerbations in African American children
AU - Fishe, Jennifer N.
AU - Labilloy, Guillaume
AU - Higley, Rebecca
AU - Casey, Deirdre
AU - Ginn, Amber
AU - Baskovich, Brett
AU - Blake, Kathryn V.
N1 - Publisher Copyright:
© 2021 Lippincott Williams and Wilkins. All rights reserved.
PY - 2021/9/1
Y1 - 2021/9/1
N2 - Objective Inhaled bronchodilators are the first-line treatment for asthma exacerbations, but individual bronchodilator response (BDR) varies by race and ethnicity. Studies have examined BDR's genetic underpinnings, but many did not include children or were not conducted during an asthma exacerbation. This pilot study tested single-nucleotide polymorphisms' (SNPs') association with pediatric African American BDR during an acute asthma exacerbation. Methods This was a study of pediatric asthma patients in the age group 2-18 years treated in the emergency department for an asthma exacerbation. We measured BDR before and after inhaled bronchodilator treatments using both the Pediatric Asthma Severity Score (PASS) and asthma severity score. We collected genomic DNA and examined whether 21 candidate SNPs from a review of the literature were associated with BDR using crude odds ratios (OR) and adjusted analysis. Results The final sample population was 53 children, with an average age of 7.2 years. The average initial PASS score (scale of ascending severity from 0 to 6) was 2.5. After adjusting for BMI, age category, gender and smoke exposure, rs912142 was associated with decreased odds of having low BDR (OR, 0.20; 95% confidence interval (CI), 0.02-0.92), and rs7081864 and rs7903366 were associated with decreased odds of having high BDR (OR, 0.097; 95% CI, 0.009-0.62) Conclusions We found three SNPs significantly associated with pediatric African American BDR that provide information regarding a child's potential response to emergency asthma exacerbation treatment. Once validated in larger studies, such information could guide pharmacogenomic evidence-based emergency asthma treatment to improve patient outcomes.
AB - Objective Inhaled bronchodilators are the first-line treatment for asthma exacerbations, but individual bronchodilator response (BDR) varies by race and ethnicity. Studies have examined BDR's genetic underpinnings, but many did not include children or were not conducted during an asthma exacerbation. This pilot study tested single-nucleotide polymorphisms' (SNPs') association with pediatric African American BDR during an acute asthma exacerbation. Methods This was a study of pediatric asthma patients in the age group 2-18 years treated in the emergency department for an asthma exacerbation. We measured BDR before and after inhaled bronchodilator treatments using both the Pediatric Asthma Severity Score (PASS) and asthma severity score. We collected genomic DNA and examined whether 21 candidate SNPs from a review of the literature were associated with BDR using crude odds ratios (OR) and adjusted analysis. Results The final sample population was 53 children, with an average age of 7.2 years. The average initial PASS score (scale of ascending severity from 0 to 6) was 2.5. After adjusting for BMI, age category, gender and smoke exposure, rs912142 was associated with decreased odds of having low BDR (OR, 0.20; 95% confidence interval (CI), 0.02-0.92), and rs7081864 and rs7903366 were associated with decreased odds of having high BDR (OR, 0.097; 95% CI, 0.009-0.62) Conclusions We found three SNPs significantly associated with pediatric African American BDR that provide information regarding a child's potential response to emergency asthma exacerbation treatment. Once validated in larger studies, such information could guide pharmacogenomic evidence-based emergency asthma treatment to improve patient outcomes.
KW - asthma
KW - bronchodilator response
KW - emergency department
KW - pediatric
KW - pharmacogenomics
UR - http://www.scopus.com/inward/record.url?scp=85112460928&partnerID=8YFLogxK
U2 - 10.1097/FPC.0000000000000434
DO - 10.1097/FPC.0000000000000434
M3 - Article
C2 - 33851947
AN - SCOPUS:85112460928
SN - 1744-6872
VL - 31
SP - 146
EP - 154
JO - Pharmacogenetics and Genomics
JF - Pharmacogenetics and Genomics
IS - 7
ER -