TY - JOUR
T1 - Single-cell characterization of calcium influx and hiv-1 infection using a multiparameter optofluidic platform
AU - Freeman, Tracey
AU - Andreou, Christina
AU - Sebra, Robert P.
AU - Beaumont, Kristin G.
AU - Swartz, Talia H.
N1 - Publisher Copyright:
© 2021, Journal of Visualized Experiments. All rights reserved.
PY - 2021
Y1 - 2021
N2 - HIV-1 causes a chronic infection that affects more than 37 million people worldwide. People living with human immunodeficiency virus (HIV) experience comorbidity related to chronic inflammation despite antiretroviral therapy. However, these inflammatory signaling has not been fully characterized. The role of early entry events on the activation of cellular signaling events and downstream gene expression has not been captured at the single-cell level. Here the authors describe a method that applies principles of live-cell fluorescence microscopy to an automated single-cell platform that cultures and images cells over user-customized time courses, allowing for high-throughput analysis of dynamic cellular processes. This assay can track single-cell live fluorescence microscopy of early events that immediately follow HIV-1 infection, notably the influx of calcium that accompanies exposure to the virus and the development of productive infection using a fluorescent reporter virus. MT-4 cells are loaded with a calcium-sensitive dye and cultured in isolated pens on a nanofluidic device. The cultured cells are infected with an HIV-1 reporter virus (HIV-1 NLCI). A fluorescence microscope positioned above the nanofluidic device measures calcium influx over an 8-min time course following acute HIV-1 exposure. HIV-1 productive infection is measured in those same cells over a 4-day interval. Imaging data from these time courses are analyzed to define virus-host receptor interactions and signaling pathway dynamics. The authors present an integrated, scalable alternative to traditional imaging methods using a novel optofluidic platform capable of single-cell sorting, culturing, imaging, and software automation. This assay can measure the kinetics of events under various conditions, including cell type, agonist, or antagonist effect, while measuring an array of parameters. This is the first established method for nanofluidic high-throughput longitudinal single-cell culture and imaging: This technique can be broadly adapted to study cellular signaling kinetics and dynamic molecular interactions.
AB - HIV-1 causes a chronic infection that affects more than 37 million people worldwide. People living with human immunodeficiency virus (HIV) experience comorbidity related to chronic inflammation despite antiretroviral therapy. However, these inflammatory signaling has not been fully characterized. The role of early entry events on the activation of cellular signaling events and downstream gene expression has not been captured at the single-cell level. Here the authors describe a method that applies principles of live-cell fluorescence microscopy to an automated single-cell platform that cultures and images cells over user-customized time courses, allowing for high-throughput analysis of dynamic cellular processes. This assay can track single-cell live fluorescence microscopy of early events that immediately follow HIV-1 infection, notably the influx of calcium that accompanies exposure to the virus and the development of productive infection using a fluorescent reporter virus. MT-4 cells are loaded with a calcium-sensitive dye and cultured in isolated pens on a nanofluidic device. The cultured cells are infected with an HIV-1 reporter virus (HIV-1 NLCI). A fluorescence microscope positioned above the nanofluidic device measures calcium influx over an 8-min time course following acute HIV-1 exposure. HIV-1 productive infection is measured in those same cells over a 4-day interval. Imaging data from these time courses are analyzed to define virus-host receptor interactions and signaling pathway dynamics. The authors present an integrated, scalable alternative to traditional imaging methods using a novel optofluidic platform capable of single-cell sorting, culturing, imaging, and software automation. This assay can measure the kinetics of events under various conditions, including cell type, agonist, or antagonist effect, while measuring an array of parameters. This is the first established method for nanofluidic high-throughput longitudinal single-cell culture and imaging: This technique can be broadly adapted to study cellular signaling kinetics and dynamic molecular interactions.
UR - http://www.scopus.com/inward/record.url?scp=85107236338&partnerID=8YFLogxK
U2 - 10.3791/62632
DO - 10.3791/62632
M3 - Article
C2 - 34096922
AN - SCOPUS:85107236338
SN - 1940-087X
VL - 2021
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 171
M1 - e62632
ER -