Simple fully automated group classification on brain fMRI

Jean Honorio, Dimitris Samaras, Dardo Tomasi, Rita Goldstein

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

We propose a simple, well grounded classification technique which is suited for group classification on brain fMRI datasets that have high dimensionality, small number of subjects, high noise level, high subject variability, imperfect registration and capture subtle cognitive effects. We propose threshold-split region as a new feature selection method and majority vote as the classification technique. Our method does not require a predefined set of regions of interest. We use average across sessions, only one feature per experimental condition, feature independence assumption, and simple classifiers. The seeming counter-intuitive approach of using a simple design is supported by signal processing and statistical theory. Experimental results in two block design datasets that capture brain function under distinct monetary rewards for cocaine addicted and control subjects, show that our method exhibits increased generalization accuracy compared to commonly used feature selection and classification techniques.

Original languageEnglish
Title of host publication2010 7th IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, ISBI 2010 - Proceedings
Pages1145-1148
Number of pages4
DOIs
StatePublished - 2010
Externally publishedYes
Event7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010 - Rotterdam, Netherlands
Duration: 14 Apr 201017 Apr 2010

Publication series

Name2010 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010 - Proceedings

Conference

Conference7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010
Country/TerritoryNetherlands
CityRotterdam
Period14/04/1017/04/10

Keywords

  • Magnetic resonance imaging
  • Pattern classification

Fingerprint

Dive into the research topics of 'Simple fully automated group classification on brain fMRI'. Together they form a unique fingerprint.

Cite this