TY - JOUR
T1 - Serum homocysteine, arsenic methylation, and arsenic-induced skin lesion incidence in Bangladesh
T2 - A one-carbon metabolism candidate gene study
AU - Niedzwiecki, Megan M.
AU - Liu, Xinhua
AU - Zhu, Huiping
AU - Hall, Megan N.
AU - Slavkovich, Vesna
AU - Ilievski, Vesna
AU - Levy, Diane
AU - Siddique, Abu B.
AU - Kibriya, Muhammad G.
AU - Parvez, Faruque
AU - Islam, Tariqul
AU - Ahmed, Alauddin
AU - Navas-Acien, Ana
AU - Graziano, Joseph H.
AU - Finnell, Richard H.
AU - Ahsan, Habibul
AU - Gamble, Mary V.
N1 - Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2018/4
Y1 - 2018/4
N2 - Background: Inorganic arsenic (As) is methylated via one carbon metabolism (OCM) to mono- and dimethylated arsenicals (MMA and DMA), facilitating urinary excretion. Hyperhomocysteinemia (HHcys), a marker of impaired OCM, is a risk factor for As-induced skin lesions, but the influences of single nucleotide polymorphisms (SNPs) in OCM genes on Hcys, As metabolism and skin lesion risk is unclear. Objectives: To (i) explore genetic sources of Hcys and the causal role of HHcys in As-induced skin lesion development using OCM genetic proxies for HHcys and (ii) identify OCM SNPs associated with urinary As metabolite proportions and/or skin lesion incidence. Methods: We conducted a case-control study nested in the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh which 876 incident skin lesion cases were matched to controls on sex, age, and follow-up time. We measured serum Hcys, urinary As metabolites, and 26 SNPs in 13 OCM genes. Results: Serum Hcys and urinary %DMA were independently associated with increased and decreased odds of skin lesions, respectively. The T allele of MTHFR 677 C ➔ T (rs1801133) was associated with HHcys, higher %MMA, and lower %DMA, but not with skin lesions. Interactions between SNPs and water As on skin lesion risk were suggestive for three variants: the G allele of MTRR rs1801394 and T allele of FOLR1 rs1540087 were associated with lower odds of skin lesions with lower As (≤50 μg/L), and the T allele of TYMS rs1001761 was associated with higher odds of skin lesions with higher As. Conclusions: While HHcys and decreased %DMA were associated with increased risk for skin lesions, and MTHFR 677 C ➔ T was a strong predictor of HHcys, MTHFR 677 C ➔ T was not associated with skin lesion risk. Future studies should explore (i) non-OCM and non-genetic determinants of Hcys and (ii) if genetic findings are replicated in other As-exposed populations, mechanisms by which OCM SNPs may influence the dose-dependent effects of As on skin lesion risk.
AB - Background: Inorganic arsenic (As) is methylated via one carbon metabolism (OCM) to mono- and dimethylated arsenicals (MMA and DMA), facilitating urinary excretion. Hyperhomocysteinemia (HHcys), a marker of impaired OCM, is a risk factor for As-induced skin lesions, but the influences of single nucleotide polymorphisms (SNPs) in OCM genes on Hcys, As metabolism and skin lesion risk is unclear. Objectives: To (i) explore genetic sources of Hcys and the causal role of HHcys in As-induced skin lesion development using OCM genetic proxies for HHcys and (ii) identify OCM SNPs associated with urinary As metabolite proportions and/or skin lesion incidence. Methods: We conducted a case-control study nested in the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh which 876 incident skin lesion cases were matched to controls on sex, age, and follow-up time. We measured serum Hcys, urinary As metabolites, and 26 SNPs in 13 OCM genes. Results: Serum Hcys and urinary %DMA were independently associated with increased and decreased odds of skin lesions, respectively. The T allele of MTHFR 677 C ➔ T (rs1801133) was associated with HHcys, higher %MMA, and lower %DMA, but not with skin lesions. Interactions between SNPs and water As on skin lesion risk were suggestive for three variants: the G allele of MTRR rs1801394 and T allele of FOLR1 rs1540087 were associated with lower odds of skin lesions with lower As (≤50 μg/L), and the T allele of TYMS rs1001761 was associated with higher odds of skin lesions with higher As. Conclusions: While HHcys and decreased %DMA were associated with increased risk for skin lesions, and MTHFR 677 C ➔ T was a strong predictor of HHcys, MTHFR 677 C ➔ T was not associated with skin lesion risk. Future studies should explore (i) non-OCM and non-genetic determinants of Hcys and (ii) if genetic findings are replicated in other As-exposed populations, mechanisms by which OCM SNPs may influence the dose-dependent effects of As on skin lesion risk.
KW - Arsenic
KW - Arsenic metabolism
KW - Gene-environment interaction
KW - Homocysteine
KW - One-carbon metabolism
KW - Skin lesions
UR - http://www.scopus.com/inward/record.url?scp=85041672134&partnerID=8YFLogxK
U2 - 10.1016/j.envint.2018.01.015
DO - 10.1016/j.envint.2018.01.015
M3 - Article
C2 - 29421402
AN - SCOPUS:85041672134
SN - 0160-4120
VL - 113
SP - 133
EP - 142
JO - Environment international
JF - Environment international
ER -