TY - JOUR
T1 - Serotonin 5-HT2A receptor expression and functionality in postmortem frontal cortex of subjects with schizophrenia
T2 - Selective biased agonism via Gαi1-proteins
AU - García-Bea, Aintzane
AU - Miranda-Azpiazu, Patricia
AU - Muguruza, Carolina
AU - Marmolejo-Martinez-Artesero, Sara
AU - Diez-Alarcia, Rebeca
AU - Gabilondo, Ane M.
AU - Callado, Luis F.
AU - Morentin, Benito
AU - González-Maeso, Javier
AU - Meana, J. Javier
N1 - Publisher Copyright:
© 2019
PY - 2019/12
Y1 - 2019/12
N2 - Serotonin 5-HT2A receptors (5-HT2ARs) have been implicated in schizophrenia. However, postmortem studies on 5-HT2ARs expression and functionality in schizophrenia are scarce. The 5-HT2AR mRNA and immunoreactive protein expression were evaluated in postmortem tissue from dorsolateral prefrontal cortex (DLPFC) of antipsychotic-free (n = 18) and antipsychotic-treated (n = 9) subjects with schizophrenia, and matched controls (n = 27). Functional coupling of 5-HT2AR to G-proteins was tested by measuring the activation induced by the agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride ((±)DOI) in antibody-capture [35S]GTPγS scintillation proximity assays (SPA). In antipsychotic-free schizophrenia subjects, 5-HT2AR mRNA expression and protein immunoreactivity in total homogenates was similar to controls. In contrast, in antipsychotic-treated schizophrenia subjects, lower mRNA expression (60±9% vs controls) and a trend to reduced protein immunoreactivity (86±5% vs antipsychotic-free subjects) just in membrane-enriched fractions was observed. [35S]GTPγS SPA revealed a significant ~6% higher stimulation of Gαi1-protein by (±)DOI in schizophrenia, whereas activation of the canonical Gαq/11-protein pathway by (±)DOI remained unchanged. Expression of Gαi1- and Gαq/11-proteins did not differ between groups. Accordingly, in rats chronically treated with clozapine, but not with haloperidol, a 30–40% reduction was observed in 5-HT2AR mRNA expression, 5-HT2AR protein immunoreactivity and [3H]ketanserin binding in brain cortical membranes. Overall, the data suggest a supersensitive 5-HT2AR signaling through inhibitory Gαi1-proteins in schizophrenia. Together with previous results, a dysfunctional pro-hallucinogenic agonist-sensitive 5-HT2AR conformation in postmortem DLPFC of subjects with schizophrenia is proposed. Atypical antipsychotic treatment would contribute to counterbalance this 5-HT2AR supersensitivity by reducing receptor expression.
AB - Serotonin 5-HT2A receptors (5-HT2ARs) have been implicated in schizophrenia. However, postmortem studies on 5-HT2ARs expression and functionality in schizophrenia are scarce. The 5-HT2AR mRNA and immunoreactive protein expression were evaluated in postmortem tissue from dorsolateral prefrontal cortex (DLPFC) of antipsychotic-free (n = 18) and antipsychotic-treated (n = 9) subjects with schizophrenia, and matched controls (n = 27). Functional coupling of 5-HT2AR to G-proteins was tested by measuring the activation induced by the agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride ((±)DOI) in antibody-capture [35S]GTPγS scintillation proximity assays (SPA). In antipsychotic-free schizophrenia subjects, 5-HT2AR mRNA expression and protein immunoreactivity in total homogenates was similar to controls. In contrast, in antipsychotic-treated schizophrenia subjects, lower mRNA expression (60±9% vs controls) and a trend to reduced protein immunoreactivity (86±5% vs antipsychotic-free subjects) just in membrane-enriched fractions was observed. [35S]GTPγS SPA revealed a significant ~6% higher stimulation of Gαi1-protein by (±)DOI in schizophrenia, whereas activation of the canonical Gαq/11-protein pathway by (±)DOI remained unchanged. Expression of Gαi1- and Gαq/11-proteins did not differ between groups. Accordingly, in rats chronically treated with clozapine, but not with haloperidol, a 30–40% reduction was observed in 5-HT2AR mRNA expression, 5-HT2AR protein immunoreactivity and [3H]ketanserin binding in brain cortical membranes. Overall, the data suggest a supersensitive 5-HT2AR signaling through inhibitory Gαi1-proteins in schizophrenia. Together with previous results, a dysfunctional pro-hallucinogenic agonist-sensitive 5-HT2AR conformation in postmortem DLPFC of subjects with schizophrenia is proposed. Atypical antipsychotic treatment would contribute to counterbalance this 5-HT2AR supersensitivity by reducing receptor expression.
KW - Antipsychotics
KW - G protein
KW - Human brain
KW - Schizophrenia
KW - Serotonin 2A receptor
UR - http://www.scopus.com/inward/record.url?scp=85075368234&partnerID=8YFLogxK
U2 - 10.1016/j.euroneuro.2019.10.013
DO - 10.1016/j.euroneuro.2019.10.013
M3 - Article
C2 - 31734018
AN - SCOPUS:85075368234
SN - 0924-977X
VL - 29
SP - 1453
EP - 1463
JO - European Neuropsychopharmacology
JF - European Neuropsychopharmacology
IS - 12
ER -