TY - JOUR
T1 - Sequestration of the δ opioid receptor
T2 - Role of the C terminus in agonist-mediated internalization
AU - Trapaidze, Nino
AU - Keith, Duane E.
AU - Cvejic, Svetlana
AU - Evans, Christopher J.
AU - Devi, Lakshmi A.
PY - 1996
Y1 - 1996
N2 - The primary structure of the opioid receptors have revealed that many of the structural features that are conserved in other G protein-coupled receptors are also conserved in the opioid receptors. Upon exposure to agonists, some G protein-coupled receptors internalize rapidly, whereas other structurally homologous G protein-coupled receptors do not. It is not known whether opioid receptors are regulated by rapid endocytosis. In transfected Chinese hamster ovary cells expressing the epitope-tagged wild type δ opioid receptor, exposure to 100 nM [D-Ala2,D-Leu5]enkephalin causes internalization of the receptor within 30 min as determined by confocal microscopy. The rate of internalization of the wild type receptor is rapid with a half-maximal reduction by about 10 min, as determined by the reduction in mean surface receptor fluorescence intensity measured using flow cytometry. In contrast, the cells expressing receptors lacking the C-terminal 15 or 37 amino acids exhibit a substantially slower rate of internalization. Furthermore, the cells expressing receptors with point mutations of any of the Ser/Thr between Ser344 and Ser363 in the C-terminal tail exhibit a significant reduction in the rate of receptor internalization. These results suggest that a portion of the C-terminal tail is involved in receptor internalization. Agents that block the formation of clathrin-coated pits considerably reduce the extent of agonist-mediated internalization of the wild type receptor. Taken together, these results suggest that the wild type opioid receptor undergoes rapid agonist-mediated internalization via a classic endocytic pathway and that a portion of the C-terminal tail plays an important role in this internalization process.
AB - The primary structure of the opioid receptors have revealed that many of the structural features that are conserved in other G protein-coupled receptors are also conserved in the opioid receptors. Upon exposure to agonists, some G protein-coupled receptors internalize rapidly, whereas other structurally homologous G protein-coupled receptors do not. It is not known whether opioid receptors are regulated by rapid endocytosis. In transfected Chinese hamster ovary cells expressing the epitope-tagged wild type δ opioid receptor, exposure to 100 nM [D-Ala2,D-Leu5]enkephalin causes internalization of the receptor within 30 min as determined by confocal microscopy. The rate of internalization of the wild type receptor is rapid with a half-maximal reduction by about 10 min, as determined by the reduction in mean surface receptor fluorescence intensity measured using flow cytometry. In contrast, the cells expressing receptors lacking the C-terminal 15 or 37 amino acids exhibit a substantially slower rate of internalization. Furthermore, the cells expressing receptors with point mutations of any of the Ser/Thr between Ser344 and Ser363 in the C-terminal tail exhibit a significant reduction in the rate of receptor internalization. These results suggest that a portion of the C-terminal tail is involved in receptor internalization. Agents that block the formation of clathrin-coated pits considerably reduce the extent of agonist-mediated internalization of the wild type receptor. Taken together, these results suggest that the wild type opioid receptor undergoes rapid agonist-mediated internalization via a classic endocytic pathway and that a portion of the C-terminal tail plays an important role in this internalization process.
UR - http://www.scopus.com/inward/record.url?scp=0029825797&partnerID=8YFLogxK
U2 - 10.1074/jbc.271.46.29279
DO - 10.1074/jbc.271.46.29279
M3 - Article
C2 - 8910588
AN - SCOPUS:0029825797
SN - 0021-9258
VL - 271
SP - 29279
EP - 29285
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 46
ER -