Semi-automated measurement of pulmonary nodule growth without explicit segmentation

A. C. Jirapatnakul, A. P. Reeves, A. M. Biancardi, D. F. Yankelevitz, C. I. Henschke

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Scopus citations

Abstract

Many nodule measurement methods rely on accurate segmentation of the nodule and may fail with complex nodule morphologies; often slight variations in segmentation result in large volume differences. A method, growth analysis from density (GAD), is presented that measures nodule growth without explicit segmentation through the application of a Gaussian weighting function to a region around the nodule, avoiding the drawbacks of segmentation-based methods. The resulting mean density is used as a surrogate for volume when computing growth. A zero-change nodule dataset was used to establish the variability of the method, followed by testing on datasets of stable, malignant, and complex nodules. There was no significant difference in percent volume change between the methods (p=0.55), and while GAD showed similar measurement variability and discriminative performance as a segmentation-based method (GAS), it was able to successfully measure growth on complex nodules where GAS failed.

Original languageEnglish
Title of host publicationProceedings - 2009 IEEE International Symposium on Biomedical Imaging
Subtitle of host publicationFrom Nano to Macro, ISBI 2009
Pages855-858
Number of pages4
DOIs
StatePublished - 2009
Externally publishedYes
Event2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009 - Boston, MA, United States
Duration: 28 Jun 20091 Jul 2009

Publication series

NameProceedings - 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009

Conference

Conference2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009
Country/TerritoryUnited States
CityBoston, MA
Period28/06/091/07/09

Keywords

  • Density change
  • Lung cancer
  • Pulmonary nodule growth
  • X-ray tomography

Fingerprint

Dive into the research topics of 'Semi-automated measurement of pulmonary nodule growth without explicit segmentation'. Together they form a unique fingerprint.

Cite this