TY - JOUR
T1 - S-adenosyl methionine protects ob/ob mice from CYP2E1-mediated liver injury
AU - Dey, Aparajita
AU - Caro, Andres A.
AU - Cederbaum, Arthur I.
PY - 2007/7
Y1 - 2007/7
N2 - Pyrazole treatment to induce cytochrome P-450 2E1 (CYP2E1) was recently shown to cause liver injury in ob/ob mice but not in lean mice. The present study investigated the effects of S-adenosyl-L-methionine (SAM) on the CYP2E1-dependent liver injury in ob/ob mice. Pyrazole treatment of ob/ob mice for 2 days caused necrosis, steatosis, and elevated serum transaminase and triglyceride levels compared with saline ob/ob mice. Administration of SAM (50 mg/kg body wt ip every 12 h for 3 days) prevented the observed pathological changes as well as the increase of apoptotic hepatocytes, caspase 3 activity, and serum TNF-α levels. SAM administration inhibited CYP2E1 activity but not CYP2E1 content. The pyrazole treatment increased lipid peroxidation, 4-hydroxynonenal and 3-nitrotyrosine protein adducts, and protein carbonyls. These increases in oxidative and nitrosative stress were prevented by SAM. Treatment of ob/ob mice with pyrazole lowered the endogenous SAM levels, and these were elevated after SAM administration. Mitochondrial GSH levels were very low after pyrazole treatment of the ob/ob mice; this was associated with elevated levels of malondialdehyde and 4-hydroxynonenal and 3-nitrotyrosine protein adducts in the mitochondria. All these changes were prevented with SAM administration. SAM protected against pyrazole-induced increase in serum transaminases, necrosis, triglyceride levels, caspase-3 activity, and lipid peroxidation even when administered 1 day after pyrazole treatment. In the absence of pyrazole, SAM lowered the slightly elevated serum transaminases, triglyceride levels, caspase-3 activity, and lipid peroxidation in obese mice. In conclusion, SAM protects against and can also reverse or correct CYP2E1-induced liver damage in ob/ob mice.
AB - Pyrazole treatment to induce cytochrome P-450 2E1 (CYP2E1) was recently shown to cause liver injury in ob/ob mice but not in lean mice. The present study investigated the effects of S-adenosyl-L-methionine (SAM) on the CYP2E1-dependent liver injury in ob/ob mice. Pyrazole treatment of ob/ob mice for 2 days caused necrosis, steatosis, and elevated serum transaminase and triglyceride levels compared with saline ob/ob mice. Administration of SAM (50 mg/kg body wt ip every 12 h for 3 days) prevented the observed pathological changes as well as the increase of apoptotic hepatocytes, caspase 3 activity, and serum TNF-α levels. SAM administration inhibited CYP2E1 activity but not CYP2E1 content. The pyrazole treatment increased lipid peroxidation, 4-hydroxynonenal and 3-nitrotyrosine protein adducts, and protein carbonyls. These increases in oxidative and nitrosative stress were prevented by SAM. Treatment of ob/ob mice with pyrazole lowered the endogenous SAM levels, and these were elevated after SAM administration. Mitochondrial GSH levels were very low after pyrazole treatment of the ob/ob mice; this was associated with elevated levels of malondialdehyde and 4-hydroxynonenal and 3-nitrotyrosine protein adducts in the mitochondria. All these changes were prevented with SAM administration. SAM protected against pyrazole-induced increase in serum transaminases, necrosis, triglyceride levels, caspase-3 activity, and lipid peroxidation even when administered 1 day after pyrazole treatment. In the absence of pyrazole, SAM lowered the slightly elevated serum transaminases, triglyceride levels, caspase-3 activity, and lipid peroxidation in obese mice. In conclusion, SAM protects against and can also reverse or correct CYP2E1-induced liver damage in ob/ob mice.
KW - Cytochrome P-450 2E1
KW - Hepatotoxicity
KW - Obesity
KW - Oxidative stress
UR - http://www.scopus.com/inward/record.url?scp=34547119335&partnerID=8YFLogxK
U2 - 10.1152/ajpgi.00004.2007
DO - 10.1152/ajpgi.00004.2007
M3 - Article
C2 - 17446309
AN - SCOPUS:34547119335
SN - 0193-1857
VL - 293
SP - G91-G103
JO - American Journal of Physiology - Gastrointestinal and Liver Physiology
JF - American Journal of Physiology - Gastrointestinal and Liver Physiology
IS - 1
ER -