Role of coronary drug-eluting stents in current clinical practice

Jaya Chandrasekhar, Kyra Martin, Roxana Mehran

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Percutaneous coronary intervention (PCI) has continued to evolve, from its origins in balloon angioplasty and bare metal stent (BMS) implantation, to the development and application of contemporary drug-eluting stents (DESs). While first generation DESs significantly decreased risk of in-stent restenosis observed with BMSs, their use was complicated by late and very late stent thrombosis. Second generation DESs have dramatically decreased this risk and the rate of one-year stent thrombosis is currently under 1%. Further DES technologies have been investigated more recently and include bioresorbable scaffolds, biodegradable polymer stents, polymer-free stents and endothelial progenitor cell technology stents. Bioresorbable scaffolds include an absorbable polymeric or metal scaffold with drug elution technology. Biodegradable polymer stents are metal stents with a resorbable polymer and antiproliferative drug, the polymer being completely absorbed within four to nine months. These stent types aim to decrease drug and polymer related hypersensitivity and late thrombotic events, as well as promoting early endothelialisation. Alongside stent improvements, more potent antithrombotic therapies are now available and both type and duration of therapy are important for optimising net treatment benefit. This review discusses the evolution in DES technology, evidence from clinical trials and considerations for DES use in special high-risk populations, including patients with diabetes, renal disease, ST segment elevation myocardial infarction (STEMI), elderly patients and patients requiring chronic oral anticoagulation.

Original languageEnglish
JournalClinical Pharmacist
Volume8
Issue number11
DOIs
StatePublished - Nov 2016

Fingerprint

Dive into the research topics of 'Role of coronary drug-eluting stents in current clinical practice'. Together they form a unique fingerprint.

Cite this