TY - JOUR
T1 - Regional variability in secondary remodeling within long bone cortices of catarrhine primates
T2 - The influence of bone growth history
AU - Mcfarlin, Shannon C.
AU - Terranova, Carl J.
AU - Zihlman, Adrienne L.
AU - Enlow, Donald H.
AU - Bromage, Timothy G.
PY - 2008
Y1 - 2008
N2 - Secondary intracortical remodeling of bone varies considerably among and within vertebrate skeletons. Although prior research has shed important light on its biomechanical significance, factors accounting for this variability remain poorly understood. We examined regional patterning of secondary osteonal bone in an ontogenetic series of wild-collected primates, at the midshaft femur and humerus of Chlorocebus (Cercopithecus) aethiops (n = 32) and Hylobates lar (n = 28), and the midshaft femur of Pan troglodytes (n = 12). Our major objectives were: 1) to determine whether secondary osteonal bone exhibits significant regional patterning across inner, mid-cortical and outer circumferential cortical rings within cross-sections; and if so, 2) to consider the manner in which this regional patterning may reflect the influence of relative tissue age and other circumstances of bone growth. Using same field-of-view images of 100-μm-thick cross-sections acquired in brightfield and circularly polarized light microscopy, we quantified the percent area of secondary osteonal bone (%HAV) for whole cross-sections and across the three circumferential rings within cross-sections. We expected bone areas with inner and middle rings to exhibit higher %HAV than the outer cortical ring within cross-sections, the latter comprising tissues of more recent depositional history. Observations of primary bone microstructural development provided an additional context in which to evaluate regional patterning of intracortical remodeling. Results demonstrated significant regional variability in %HAV within all skeletal sites. As predicted, %HAV was usually lowest in the outer cortical ring within cross-sections. However, regional patterning across inner vs. mid-cortical rings showed a more variable pattern across taxa, age classes, and skeletal sites examined. Observations of primary bone microstructure revealed that the distribution of endosteally deposited bone had an important influence on the patterning of secondary osteonal bone across rings. Further, when present, endosteal compacted coarse cancellous bone always exhibited some evidence of intracortical remodeling, even in those skeletal sites exhibiting comparatively low %HAV overall. These results suggest that future studies should consider the local developmental origin of bone regions undergoing secondary remodeling later in life, for an improved understanding of the manner in which developmental and mechanical factors may interact to produce the taxonomic and intraskeletal patterning of secondary bone remodelling in adults.
AB - Secondary intracortical remodeling of bone varies considerably among and within vertebrate skeletons. Although prior research has shed important light on its biomechanical significance, factors accounting for this variability remain poorly understood. We examined regional patterning of secondary osteonal bone in an ontogenetic series of wild-collected primates, at the midshaft femur and humerus of Chlorocebus (Cercopithecus) aethiops (n = 32) and Hylobates lar (n = 28), and the midshaft femur of Pan troglodytes (n = 12). Our major objectives were: 1) to determine whether secondary osteonal bone exhibits significant regional patterning across inner, mid-cortical and outer circumferential cortical rings within cross-sections; and if so, 2) to consider the manner in which this regional patterning may reflect the influence of relative tissue age and other circumstances of bone growth. Using same field-of-view images of 100-μm-thick cross-sections acquired in brightfield and circularly polarized light microscopy, we quantified the percent area of secondary osteonal bone (%HAV) for whole cross-sections and across the three circumferential rings within cross-sections. We expected bone areas with inner and middle rings to exhibit higher %HAV than the outer cortical ring within cross-sections, the latter comprising tissues of more recent depositional history. Observations of primary bone microstructural development provided an additional context in which to evaluate regional patterning of intracortical remodeling. Results demonstrated significant regional variability in %HAV within all skeletal sites. As predicted, %HAV was usually lowest in the outer cortical ring within cross-sections. However, regional patterning across inner vs. mid-cortical rings showed a more variable pattern across taxa, age classes, and skeletal sites examined. Observations of primary bone microstructure revealed that the distribution of endosteally deposited bone had an important influence on the patterning of secondary osteonal bone across rings. Further, when present, endosteal compacted coarse cancellous bone always exhibited some evidence of intracortical remodeling, even in those skeletal sites exhibiting comparatively low %HAV overall. These results suggest that future studies should consider the local developmental origin of bone regions undergoing secondary remodeling later in life, for an improved understanding of the manner in which developmental and mechanical factors may interact to produce the taxonomic and intraskeletal patterning of secondary bone remodelling in adults.
KW - Bone growth and development
KW - Bone remodeling
KW - Endosteal bone
KW - Mechanical adaptation
KW - Primates
KW - Secondary osteon
UR - http://www.scopus.com/inward/record.url?scp=50849110487&partnerID=8YFLogxK
U2 - 10.1111/j.1469-7580.2008.00947.x
DO - 10.1111/j.1469-7580.2008.00947.x
M3 - Article
C2 - 18691379
AN - SCOPUS:50849110487
SN - 0021-8782
VL - 213
SP - 308
EP - 324
JO - Journal of Anatomy
JF - Journal of Anatomy
IS - 3
ER -