Re-Engineered Stromal Cell-Derived Factor-1α and the Future of Translatable Angiogenic Polypeptide Design

William Hiesinger, Andrew B. Goldstone, Y. Joseph Woo

Research output: Contribution to journalReview articlepeer-review

7 Scopus citations

Abstract

Smaller engineered analogs of angiogenic cytokines may provide translational advantages, including enhanced stability and function, ease of synthesis, lower cost, and, most important, the potential for modulated delivery via engineered biomaterials. In order to create such a peptide, computational molecular modeling and design was employed to engineer a minimized, highly efficient polypeptide analog of the stromal cell-derived factor-1α (SDF) molecule. After removal of the large, central β-sheet region, a designed diproline linker connected the native N-terminus (responsible for receptor activation and binding) and C-terminus (responsible for extracellular stabilization). This yielded energetic and conformational advantages resulting in a small, low-molecular-weight engineered SDF polypeptide analog (ESA) that was shown to have angiogenic activity comparable to or better than that of recombinant human SDF both in vitro and in a murine model of ischemic heart failure.

Original languageEnglish
Pages (from-to)139-144
Number of pages6
JournalTrends in Cardiovascular Medicine
Volume22
Issue number6
DOIs
StatePublished - Aug 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Re-Engineered Stromal Cell-Derived Factor-1α and the Future of Translatable Angiogenic Polypeptide Design'. Together they form a unique fingerprint.

Cite this