Radionuclide labeling and evaluation of candidate radioligands for PET imaging of histone deacetylase in the brain

Young Jun Seo, Lisa Muench, Alicia Reid, Jinzhu Chen, Yeona Kang, Jacob M. Hooker, Nora D. Volkow, Joanna S. Fowler, Sung Won Kim

Research output: Contribution to journalArticlepeer-review

26 Scopus citations


Histone deacetylases (HDACs) regulate gene expression by inducing conformational changes in chromatin. Ever since the discovery of a naturally occurring HDAC inhibitor, trichostatin A (TSA) stimulated the recent development of suberoylanilide (SAHA, Zolinza®), HDAC has become an important molecular target for drug development. This has created the need to develop specific in vivo radioligands to study epigenetic regulation and HDAC engagement for drug development for diseases including cancer and psychiatric disorders. 6-([ 18F]Fluoroacetamido)-1-hexanoicanilide ([18F]FAHA) was recently developed as a HDAC substrate and shows moderate blood-brain barrier (BBB) permeability and specific signal (by metabolic trapping/or deacetylation) but rapid metabolism. Here, we report the radiosynthesis of two carbon-11 labeled candidate radiotracers (substrate- and inhibitor-based radioligand) for HDAC and their evaluation in non-human primate brain. PET studies showed very low brain uptake and rapid metabolism of both labeled compounds but revealed a surprising enhancement of brain penetration by F for H substitution when comparing one of these to [18F]FAHA. Further structural refinement is needed for the development of brain-penetrant, metabolically stable HDAC radiotracers and to understand the role of fluorine substitution on brain penetration.

Original languageEnglish
Pages (from-to)6700-6705
Number of pages6
JournalBioorganic and Medicinal Chemistry Letters
Issue number24
StatePublished - 15 Dec 2013
Externally publishedYes


  • Brain
  • Brain permeability
  • Carbon-11
  • Epigenetics
  • Positron emission tomography
  • SAHA


Dive into the research topics of 'Radionuclide labeling and evaluation of candidate radioligands for PET imaging of histone deacetylase in the brain'. Together they form a unique fingerprint.

Cite this