TY - JOUR
T1 - Pyrazole and 4-methylpyrazole inhibit oxidation of ethanol and dimethyl sulfoxide by hydroxyl radicals generated from ascorbate, xanthine oxidase, and rat liver microsomes
AU - Cederbaum, Arthur I.
AU - Berl, Leonard
N1 - Funding Information:
r These studies were supported by USPHS Grants AA-03508, AA-03312 and RCDA 5K02-AA-OOOS3 from the National Institute on Alcohol Abuse and Alcoholism. *Author to whom correspondence should be addressed. * Mount Sinai Summer Volunteer.
PY - 1982/7
Y1 - 1982/7
N2 - Pyrazole and 4-methylpyrazole, which are potent inhibitors of alcohol dehydrogenase, inhibited the oxidation of ethanol and of dimethyl sulfoxide by two model hydroxyl radical-generating systems. The systems used were the iron-catalyzed oxidation of ascorbic acid and the coupled oxidation of xanthine by xanthine oxidase. Pyrazole and 4-methylpyrazole were more effective inhibitors at lower substrate concentrations than at higher substrate concentrations; the oxidation of ethanol was inhibited to a greater extent than the oxidation of dimethyl sulfoxide. These results are consistent with competition between pyrazole or 4-methylpyrazole with the substrates for the generated hydroxyl radicals. Pyrazole and 4-methylpyrazole appear to be equally effective in reacting with hydroxyl radicals. An approximate rate constant of about 8 × 109 m-1 s-1 was calculated from the inhibition curves, indicating that pyrazole and 4-methylpyrazole are potent scavengers of the hydroxyl radical. Previous studies have implicated a role for hydroxyl radicals in the microsomal pathway of ethanol oxidation. In the presence of azide (to inhibit catalase), pyrazole and 4-methylpyrazole inhibited the NADPH-dependent microsomal oxidation of ethanol, as well as several other hydroxyl radical-scavenging agents. This inhibition by pyrazole and by 4-methylpyrazole may reflect a mechanism involving competition for hydroxyl radicals generated by the microsomes. However, the kinetics of inhibition by pyrazole were mixed, not competitive, and pyrazole and 4-methylpyrazole also inhibited aminopyrine demethylase activity. Pyrazole has been shown by others to interact with cytochrome P-450. It is suggested that pyrazole and 4-methylpyrazole affect microsomal oxidation of ethanol via effects on the mixed-function oxidase system and via competition for the generated hydroxyl radicals. In view of these results, low concentrations of pyrazole and 4-methylpyrazole should be used in studies on pathways of alcohol metabolism, and caution should be made in interpreting the actions of these compounds when used at high concentrations.
AB - Pyrazole and 4-methylpyrazole, which are potent inhibitors of alcohol dehydrogenase, inhibited the oxidation of ethanol and of dimethyl sulfoxide by two model hydroxyl radical-generating systems. The systems used were the iron-catalyzed oxidation of ascorbic acid and the coupled oxidation of xanthine by xanthine oxidase. Pyrazole and 4-methylpyrazole were more effective inhibitors at lower substrate concentrations than at higher substrate concentrations; the oxidation of ethanol was inhibited to a greater extent than the oxidation of dimethyl sulfoxide. These results are consistent with competition between pyrazole or 4-methylpyrazole with the substrates for the generated hydroxyl radicals. Pyrazole and 4-methylpyrazole appear to be equally effective in reacting with hydroxyl radicals. An approximate rate constant of about 8 × 109 m-1 s-1 was calculated from the inhibition curves, indicating that pyrazole and 4-methylpyrazole are potent scavengers of the hydroxyl radical. Previous studies have implicated a role for hydroxyl radicals in the microsomal pathway of ethanol oxidation. In the presence of azide (to inhibit catalase), pyrazole and 4-methylpyrazole inhibited the NADPH-dependent microsomal oxidation of ethanol, as well as several other hydroxyl radical-scavenging agents. This inhibition by pyrazole and by 4-methylpyrazole may reflect a mechanism involving competition for hydroxyl radicals generated by the microsomes. However, the kinetics of inhibition by pyrazole were mixed, not competitive, and pyrazole and 4-methylpyrazole also inhibited aminopyrine demethylase activity. Pyrazole has been shown by others to interact with cytochrome P-450. It is suggested that pyrazole and 4-methylpyrazole affect microsomal oxidation of ethanol via effects on the mixed-function oxidase system and via competition for the generated hydroxyl radicals. In view of these results, low concentrations of pyrazole and 4-methylpyrazole should be used in studies on pathways of alcohol metabolism, and caution should be made in interpreting the actions of these compounds when used at high concentrations.
UR - http://www.scopus.com/inward/record.url?scp=0020448432&partnerID=8YFLogxK
U2 - 10.1016/0003-9861(82)90242-9
DO - 10.1016/0003-9861(82)90242-9
M3 - Article
C2 - 6287938
AN - SCOPUS:0020448432
SN - 0003-9861
VL - 216
SP - 530
EP - 543
JO - Archives of Biochemistry and Biophysics
JF - Archives of Biochemistry and Biophysics
IS - 2
ER -