Abstract
Purkinje cell (PC) dysfunction or death has been implicated in a number of disorders including ataxia, autism and multiple sclerosis. Plasma membrane calcium ATPase 2 (PMCA2), an important calcium (Ca2+) extrusion pump that interacts with synaptic signaling complexes, is most abundantly expressed in PCs compared to other neurons. Using the PMCA2 heterozygous mouse as a model, we investigated whether a reduction in PMCA2 levels affects PC function. We focused on Ca2+ signaling and the expression of glutamate receptors which play a key role in PC function including synaptic plasticity. We found that the amplitude of depolarization and 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid receptor (AMPAR)-mediated Ca2+ transients are significantly higher in cultured PMCA2+/- PCs than in PMCA2+/+ PCs. This is due to increased Ca2+ influx, since P/Q type voltage-gated Ca2+ channel (VGCC) expression was more pronounced in PCs and cerebella of PMCA2+/- mice and VGCC blockade prevented the elevation in amplitude. Neuronal nitric oxide synthase (nNOS) activity was higher in PMCA2+/- cerebella and inhibition of nNOS or the soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway, which mediates nitric oxide (NO) signaling, reduced the amplitude of Ca2+ transients in PMCA2+/- PCs, in vitro. In addition, there was an age-dependent decrease in metabotropic glutamate receptor 1 (mGluR1) and AMPA receptor subunit GluR2/3 transcript and protein levels at 8weeks of age. These changes were followed by PC loss in the 20-week-old PMCA2+/- mice. Our studies highlight the importance of PMCA2 in Ca2+ signaling, glutamate receptor expression and survival of Purkinje cells.
Original language | English |
---|---|
Pages (from-to) | 22-31 |
Number of pages | 10 |
Journal | Molecular and Cellular Neuroscience |
Volume | 51 |
Issue number | 1-2 |
DOIs | |
State | Published - Aug 2012 |
Externally published | Yes |
Keywords
- AMPA
- Ataxia
- Autism
- Calcium channel
- Glutamate
- Ion pump
- Neurodegeneration
- Nitric oxide